

Potsdam Institute for Climate Impact Research

Climate Risk Analysis for Identifying and Weighing Adaptation Strategies for the Agricultural Sector in Northern Ghana

- A Study at District Level in the Upper West Region -

Supplementary Material

Supplement to a study prepared by the Potsdam Institute for Climate Impact Research (PIK) for the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH on behalf of the German Federal Ministry for Economic Cooperation and Development (BMZ), in collaboration with the Department of Planning and Land Management at the University for Development Studies (UDS) and the Resilience Against Climate Change (REACH) project.

Chapter 1 – Changing Climate Conditions

Climate Models

A climate model is a computer model, describing the state and change rate of different Earth components, for example atmosphere, land surface, vegetation, ocean, sea ice, aerosols and carbon cycle (van Storch, 2005). The components of such a model are sketched in the figure below.

Figure 1: Components of the global climate system (IPCC, 2007).

Climate models have proven to reproduce current climate and past climate changes reasonably well. There is considerable confidence that the models are capable of estimating future climate changes, especially on continental and larger scales. Climate model's predictions come with fewer uncertainties for some climate variables (e.g. temperature) than others (e.g. precipitation). They can represent annual mean values better than extreme events and annual variations (IPCC, 2014). More detailed information on climate models can also be found in van Storch (2005).

Figure 2: The 11-year moving average of the change in maximum daily temperature in °C compared to 2005 based on CORDEX-CORE data. Values are averages over UWR. Each variegated line indicates a projection of an individual model. The black line displays the multi-model mean.

Figure 3: The 11-year moving average of projected change in mean annual precipitation in mm per year compared to 2006 based on CORDEX-CORE data. Values are averages over the UWR. Each variegated line indicates a projection of an individual model. The black line displays the multi-model mean.

Chapter 2 – Climate Impacts on Agricultural Production

	Maize			Sorghum		Groundnut			Cowpea			
Parameters	A	В	С	A	B	С	A	В	С	A	В	С
Planting density	4	4.5	6	1.5	2.0	2.5	8	10	12	10	12	15
Starting fertiliser	10	20	50	5	5	20	10	20	50	20	30	50
Top dressing	30	50	80	5	2	10	5	5	10	-	-	-
Manure	500	1000	-	500	1000	-	500	1000	-	500	1000	-
Tillage type	Chisel	Blade	Disc	Chisel	Blade	Disc	Chisel	Blade	Disc	Chisel	Blade	Disc

Table 1: Parameters for different farming systems used in APSIM

	Position	Date	District
1	Gender Desk Officer	09.02.2020	Wa West
2	Manager of Wechiau Hippo Sancturary, and	09.02.2020	Wa West
	former Assembly Man of Wechiau		
3	Coordinator of Lawra Climate Change	11.02.2020	Lawra
	Platform, and retired agricultural officer		
4	Field officer, CIKOD (Center for Indigenous	11.02.2020	Lawra
	Knowledge and Organisational Development)		
5	Regional Manager of Irrigation Authority	12.02.2020	Wa
6	Regional Deputy Director of Agriculture	12.02.2020	Wa
7	District Director of MoFa Wa West	12.02.2020	Wa
8	Deputy Director of MoFa Wa West	12.02.2020	Wa
9	Agricultural Extension Officer, MoFa	16.06.2020	Sissala East
10	Production Officer, MoFa	16.06.2020	Sissala East
11	Desk Officer of "Women in Agriculture"	12.06.2020	Sissala East

Chapter 3 – Selection of adaptation measures

Table 2: List of interviewees¹

	Position	Date	Location
1	Cashew-groundnut farmer	07.05.2020	Soma, STK
2	Cashew-groundnut farmer	11.05.2020	Sawla, STK
3	Cashew-groundnut farmer	07.05.2020	Dunbey, STK
4	Maize farmer	20.04.2020	Tumu, Sissala East
5	Maize farmer	23.04.2020	Kog, Sissala East
6	Maize farmer	24.04.2020	Tumu, Sissala East
7	Sorghum farmer	19.04.2020	Konyukuo, Lawra
8	Sorghum farmer	22.04.2020	Konyukuo, Lawra
9	Sorghum farmer	20.04.2020	Zambo, Lawra
10	Tomato farmer	18.04.2020	Daboziri, Wa West
11	Tomato farmer	16.04.2020	Tengdomo, Wa West
12	Tomato farmer	30.04.2020	Daboziri, Wa West

Table 3: List of experts interviewed for cost-benefit analysis

¹ All interviewees gave consent to record the interview and state their position and district

Strategies	votes	sub-strategies	votes	benefi	its	barriers		
Strategies	Votes	furrow system	2	cheap		wastes water		
Irrigation		boreholes (solar, manual)	9	reliable water source		capital intensive, maintenance costs		
		water pumps	4	reduces labour cost, longer				
	60	water pumps	4	distances possible		costs, maintenance, fuel		
		drip, mist irrigation	11	efficient water use		cost, maintenance difficult		
		water cannels	10	minimum water loss	source of income, food security, all year	capital intensive, maintenance costs		
		shallow wells		use available moisture for	round farming, source			
		(hand dug)	3		of employment	dry out easily		
		use of residiual	5	production				
		moisture/wetland rivers				high cost of equipment, destruction by		
		wells				high cost of equipment, desirability		
		dams	21					
		ponds						
	6	zai pits				tedious, can't be done on a large scale		
		crop residuals				access to materials; bush fires, termites		
		crop residuais				access to materials, busin mes, termites		
Moisture		living mulch	1	conserves moisture, im		seed availability, agronomic knowledge		
conservation		mulching with		improved soil structure,	improved crop yield	hugh fines and man		
		grass				bushfires, seed grass		
		green manuring		-				
		composting afforestation	5					
		traditional	5	easily accessible		limited to early to		
		methods	5		-	limited knowledge		
	10	rainfall data	1			high cost of weather station equipment, farmers ability to read weather		
Weather					no losses, improved yields, timely operation	information, poor record keeping		
forecasting	10	G-met		and the annual table in such				
		Esoko forecast	4	easily accessible, early information		need a phone, network, not reliable, costs		
		Iska weather		easily accessible		need a phone, network		
		forecast						
		crop rotation or intercropping	4					
Soil fertility management	18	(cereals-legumes)						
		Manure	5	improved soil structure and	d moisture retention of			
		composting	7	soil, improved soil nutrien	nt levels, weed control	inadequate access to water at farm for		
		6				composting; competitive use for biomass;		
		erosion control	2					
		organic fertilizer				organic fertilizer is costly		
	43	improved seeds		high yielding, high nutrient		inadequate capacity to produce improved seed, expensive to acquire seed, requires		
Improved		(Hybrid/OPV)	26	maximises land use, fix improved local seeds are ad		high fertilization, takes more time and		
seeds				improved local seeds are at	aptive to environment	attention, agronomic skills needed		
		Establish						
		community seed	17	traceable seed growers				
		production system				doctruction by bordow (pottle supplet the		
	33	Cashew/Mango	21	Cash crops, short + long-		destruction by herders/cattle, availability of seedlings, bush fires, water shortage in		
		with legumes		term incomes, nutritious	increase in population	dry season, access to land, labour		
Agroforestry		Natural regeneration of		increase income to	of pollinators, by product for livestock			
		trees (shea,	12	women, medicinal, fruits (shop buttor, allows	feeding	bushfires, cutting of trees for charcoal		
		Faidherbia, Dawa		fruits/shea butter, allows intercropping		production, destruction by herders/cattle		
		Dawa)						
	-	early harvesting	1					
Improved Post-		con, norvesting	-					
harvest	11	PICs bags	7	value additions (through qu		inadequate knowledge in IPM		
management (IPM)		mechanised	3	losse	s,			
(threshers	5					
		use of tarpaulin moisture meter						
Integrated pest and	6							
		hand picking	2	requires no techni	cal knowledge			
		farm hygiene		less expe	nsive			
desease		appropriate use of chemicals	4	readily available	e chemicals	high cost of chemicals		
management		use of natural		eco-frie	ndly			
		enemies		eco-mei	indiy			
		pest resistant varieties				non availability of pest resistant varieties		
		varieties						

Table 4: Group workduringkick-offworkshop:specificationofadaptation measures;collectionofopportunities&barriers

Chapter 7 – Irrigation

Figure 4: Irrigation map developed within the EUGAP project by SOFRECO² in 2017 with input provided by local authorities of the Upper West Region. An updated version of the map is on the way since some changes are planned. This includes a reduction in new pumping stations and boreholes. The dams are still planned to be implemented as shown in the map.

² Address of SOFRECO: 92-98, boulevard Victor Hugo 92115 Clichy-Cedex France

10 year running mean of river discharge

Figure 7: Simulations of past and future river discharge in the Black Volta River in Wa West based on results by (Murken, L. et al., 2019)

Bibliography

IPCC, (2007). Climate Change 2007 Synthesis Report. Fourth Assessment Report. https://doi.org/10.1256/004316502320517344

IPCC, (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Core Writing Team, R.K. Pachauri and L.A. Meyer (eds.)]. IPCC, Geneva, Switzerland, 151 pp.

Murken, L., Aschenbrenner, P., Chemura, A., Hattermann, F., Koch, H., Lehmann, J., Liersch, S., Roehrig, F., Schauberger, B., Yalew, A., Gornott, C. (2019) *Climate risk analysis for identifying and weighing adaptation strategies in Ghana's agricultural sector*.

von Storch, H., (2005). Models of Global and Regional Climate. In *Encyclopedia of Hydrological Sciences*. https://doi.org/10.1002/0470848944.hsa035