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Annex: Climate risk analysis for adaptation 
planning in Cameroon’s agricultural sector

Methodology 

Climate projections 

The basis for the evaluation of the current and near-past climate 
in this study is the climate observational dataset W5E5 (Cucchi et 
al., 2020; Lange et al., 2021), a dataset based on a combination of 
simulations from global weather models, satellite data and in-situ 
observations. The dataset covers the time period 1979–2016 
at daily temporal resolution and the entire globe at 0.5° × 0.5° 
grid spacing (corresponding to approximately 55 km × 55 km in 
Cameroon). 

Future climate projection data simulated by Global Climate 
Models (GCMs) was obtained from ISIMIP3b (phase 3b of the 
Inter-Sectoral Impact Model Intercomparison Project; Lange, 
2019; Lange & Büchner, 2021). Historical simulations cover the 
years 1850–2014 and future projections under both greenhouse 
gas emissions scenarios cover the years 2015–2100. W5E5 is 
the observational reference dataset used for bias adjustment 
and statistical downscaling of ISIMIP3b. The GCMs included 
in ISIMIP3b are CanESM5 (short: Can), CNRM-ESM2-1 (short: 
CNES), CNRM-CM6-1 (short: CNCM), EC-Earth3 (short: EC), 
GFDL-ESM4 (short: GFDL), IPSL-CM6A-LR (short: IPSL), MIROC6 
(short: MIROC), MPI-ESM1-2-HR (short: MPI), MRI-ESM2-0 
(short: MRI) and UKESM1-0-LL (short: UKE) (Lange, 2019; Lange 
& Büchner, 2021). 

GCMs cannot perfectly represent the current and future climate. 
They naturally show slightly different projections in modelling 
the climate, even if they are driven by the same emissions 
scenario. Differences among the models indicate the range of 
uncertainty and the multi-model mean provides a conservative 
estimate of possible climatic changes. Thus, in this report, 
the multi-model mean is shown in figures and maps and an 
uncertainty range based on all GCM results is either shown 
or discussed. Climate change analyses are based on 20-year 
averages1, meaning that the mean annual temperature in e.g. 
2030 is calculated as an average over the mean temperature 
between 2021 and 2040. Changes in the past are analysed by 
comparing the W5E5 data from 2000–2019 with 1979–1998. The 
reference climate, used as the baseline in this study, refers to 
the climate in 2004 (1995–2014) as the period is included in the 
historical simulations of ISIMIP3b. The projected climate data 
is evaluated for the periods 2030 (2021–2040), 2050 (2041–2060) 
and 2090 (2081–2099) in differentiation to the baseline (2004) for 
each model and scenario. 

 
The indicators analysed in this study are the annual average 
mean air temperature, the number of very hot days per year 
(maximum temperature above 35 °C), the number of hot nights 
per year (minimum temperature above 25 °C), the mean annual 
precipitation sum, the heavy precipitation intensity, and the rainy 
season onset, cessation and length. 

The indicator for heavy precipitation intensity is defined as 
the value of the 95th percentile considering only days with 
precipitation (>0.1 mm). 

We used the method of percentage cumulative mean rainfall 
for determining rainfall onset and cessation dates. The method 
was adopted from Liebmann et al. (2012) objective, and well-
tested methodology. Onset is defined as occurring when daily 
precipitation consistently exceeds its local annual daily average 
and ends when precipitation systematically drops below that 
value. Wet season length, rate, and total are then determined. 
Much of Africa is characterized by a single summer wet 
season, with a well-defined onset and end, during which most 
precipitation falls. Exceptions to the single wet season regime 
occur mostly near the equator, where two wet periods are usually 
separated by a period of relatively modest precipitation. Another 
particularly interesting region is the semiarid to arid eastern 
Horn of Africa, where there are two short wet seasons separated 
by nearly dry periods. Chiefly, the summer monsoon spreads 
poleward from near the equator in both hemispheres, although in 
southern Africa the wet season progresses northwestward from 
the southeast coast. Composites relative to onset are constructed 
for selected points in West Africa and in the eastern Horn of 
Africa. In each case, onset is often preceded by the arrival of an 
eastward-propagating precipitation disturbance. Comparisons are 
made with the satellite-based Tropical Rainfall Measuring Mission 
(TRMM and it has been successfully applied to the complete 
African continent. The certainty level of future climate projections 
is determined by the percentage of models agreeing on the trend 
(with significance level of 0.05) (compare IPCC, 2014). ≥ 90 %: very 
high; ≥ 80 %: high; ≥ 50 %: medium; ≤ 50 %: low.

1) Climate variables (such as temperature and precipitation) show high annual variability. In order to analyse long-term climatic changes instead of annual variabilities, 
means of climate variables over 20–40 years are compared with one another.
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Land cover change 

Mapping areas of forest cover change is essential for developing 
locally adapted strategies to control these dynamics better 
(de Wasseige et al., 2014). To carry out such monitoring, 
remote sensing is a less-expensive method that has proven 
its effectiveness for the assessment of forest cover dynamics 
and degradation over several decades and at different scales 
(Loveland et al., 2012; Hansen et al., 2013; Nagendra et al., 2013; 
Mukete et al., 2018).

Mbam and Kim region were analyzed using Sentinel satellite 
imagery with its high spatial resolution and multispectral 
capabilities for land use classification. The images were 
preprocessed to ensure cloud-free data. Relevant spectral, 
textural, and contextual features were extracted from the 
preprocessed imagery using a training dataset. The model 
was then trained using the training data samples and their 
corresponding features to classify land use classes. The trained 
model was used to classify each pixel or image segment into 
land use classes. Accuracy assessment was carried out using 
independent reference data and expert opinion to validate 
the results. Post-classification processing and analysis were 
conducted to refine the land use classification results using post-
processing techniques. The classified land use map was analyzed 
and interpreted to extract meaningful information about 
forest areas, land cover changes, and ecological patterns. The 
assessment of the accuracy and thus confidence level is based on 
data from training sets and expert opinion. 

Grasland productivity 

The analysis is relevant for major grazing animals including cattle, 
sheep and goat. The dynamic global vegetation model LPJmL 
(Lund-Potsdam-Jena with managed land) has been used, which 
was mainly developed at PIK (Schaphoff et al., 2018; Von Bloh 
et al., 2018). LPJmL simulates key ecosystem processes such as 
photosynthesis, plant and soil respiration, carbon allocation, 
evapotranspiration and phenology of natural as well as managed 
vegetation, as coherently linked through their carbon, water and 
nitrogen fluxes (Schaphoff et al., 2018; Von Bloh et al., 2018). 
Dynamic global vegetation models are often used to study the 
impact of climate change on vegetation cover. In addition to natural 
vegetation dynamics, LPJmL features a representation of different 
grassland management schemes, enabling it to simulate the 
impacts of grazing on managed grasslands (Rolinski et al., 2018).

Daily forage requirements vary by animal type. To make them 
comparable, animal types can be converted to a generic Tropical 
Livestock Unit (TLU) based on their live weight using example 
conversion factors as shown in Table 10. One TLU corresponds 
to one animal with a live weight of 250 kg. A daily forage 
requirement of 6.25 kg dry matter per TLU is assumed (MINEPIA, 
2022), and no distinction between specific animal types is made 
in the following analysis.

Livestock species Number of TLUs

Cattle 0.73

Sheep 0.12

Goat 0.12

Table 1: Conversion factors for different types of animals to Tropical 
Livestock Units (TLUs) (based on Ziébé, Thys & De Deken, 2005).

In the model simulations, grazing lands are assumed to be 
covered by grass only, hence with no trees or shrub species. The 
model does not distinguish between different grass species. 
The daily forage requirement of 6.25 kg / TLU is set relatively 
high to account for variations in forage digestibility that cannot 
be captured by the model. The effect of grazing by livestock 
is represented as a daily partial removal of the leaf biomass of 
grasses. Grazing is assumed to always leave a minimum stubble 
height of about 1 cm. On the demand side, the amount of 
removed biomass depends on the density of grazing animals 
(number of TLUs per hectare). On the supply side, available 
biomass changes between seasons and between years in 
response to weather, but also in response to previous grazing 
and the long-term land-use history. Continuous grazing at high 
livestock densities leads to a deterioration of soil carbon and soil 
nitrogen stocks in the model with negative effects on grassland 
productivity over time. Other negative side effects of overgrazing 
such as soil erosion are not represented in the model. Soil carbon 
and nitrogen stocks and biomass supply are also affected by 
fire. Wildfires are simulated by the SPITFIRE model included 
in LPJmL (Drüke et al. 2019). SPITFIRE distinguishes lightning-
caused and human-caused “ignition events”, but fire only 
occurs if ignitions meet with sufficient fuel loads that are also 
sufficiently dry.

There are no spatially and temporally explicit data available 
for the actual livestock grazing density in Cameroon for the 
historical period. Land-cover products vary substantially in their 
estimates of areas covered by different land-cover types, due 
to uncertainties in the classification algorithms. For example, 
grasslands are estimated to cover between 1.34 and 2.69 million 
ha in Cameroon during 2015–2019 (Table 11). Estimating grazing 
demand at sub-annual scale is complicated by the practice of 
transhumance, which involves seasonal movement of herds over 
often large distances.

Given these data limitations, we do not attempt to reproduce 
the actual grazing regimes found in Cameroon. Instead, 
we systematically test a range of biomass removal rates 
(corresponding to livestock densities between 0 and 6 TLU / ha) 
and select in each grid cell and 20-year time slice the removal 
rate that produces the highest total annual grass yield. We 
consider this grass yield a grazing potential but caution that it 
is not equivalent to a carrying capacity. Since grass yield can 
vary between individual years in the 20-year period and even 
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seasonally, utilizing the full grazing potential would either require 
a seasonal adjustment of the livestock density or supplemental 
fodder from other sources. The grazing potential we calculate 
acknowledges that both of these management techniques are 
currently practiced in Cameroon while not explicitly accounting 
for them quantitatively, as would be required in order to estimate 
the carrying capacity.

Aggregating grid-cell yield levels to regions or to the national 
scale requires some assumption on the extent of grazing land in 
each grid cell. We use a gridded dataset of grazing land from the 
History Database of the Global Environment (HYDE, version 3.2.1, 
Klein Goldewijk et al. 2017). The sum of HYDE grazing land across 
all grid cells in Cameroon (2.68 million ha) matches reasonably 
well with the sum over temporary and permanent meadows and 
pastures reported in FAOSTAT (2.72 million ha, Table 11). 

Following the spatial resolution of the climate data, LPJmL 
simulates the land surface as discrete grid cells with a grid size 
of 0.5° × 0.5°, roughly 55 × 55 km. Simulations of historical and 
future grassland production under a range of livestock densities 
are driven by the 10 Global Climate Models (GCMs) and two 
emissions scenarios as presented in Chapter 1. Future changes 
in annual grazing potential are presented for three time periods: 
near future ~2030 (2021–2040), mid-century ~2050 (2041–2060), and 
end-of-century ~2090 (2081–2100). All changes are in comparison 
to the historical period 1995–2014. No changes in grazing land 
are assumed for the future.

Suitability assessment

Climatic crop suitability models have been applied to assess 
climate impacts on the potential for maize (Zea mays), cassava 
(Manihot esculenta) and cocoa (Theobroma cacao) as individual 
crops as well as the potential for agroforestry systems as an 
adaptation option for cocoa production in Cameroon. Crop 
suitability assessments are based on the understanding that the 
biophysical parameters (e.g. soil pH) and climatic variables (e.g. 

total amount of precipitation received in the growing season) play 
an important role in determining crop production rates, which is 
true in many tropical areas where agriculture is mainly influenced 
by weather. A suitability model therefore uses these variables 
to create a score for each crop, each period and each location 
depending on how the variables meet the crop requirements or 
conditions in known current production areas (Evangelista et 
al., 2013). Replacing the climatic variables with those projected 
under climate change shows the change in the potentially 
cultivatable arable land of an area for a specific crop. Thus, crop 
suitability models are used in assessing climate impacts on the 
season-long crop production potential for national and local-
level adaptation planning.

In this study, we applied the EcoCrop model which calculates 
the suitability of environments by comparing crop-specific 
ecological ranges, with climate data for a given environment. The 
crop-specific parameters and climate data needed for EcoCrop 
are presented in Table 10. As input data, we used the ISRIC soil 
data base, future climate projection data simulated by GCMs 
were obtained from ISIMIP3b (Lange, 2019; Lange et al., 2021). 
The crop requirements were obtained from the FAO Ecocrop 
database, adjusted accordingly to Cameroon-specific conditions. 
The emissions scenarios SSP1-RCP2.6 and SSP3-RCP7.0 for 
suitability projections in the years 2030 (2021–2040), 2050 
(2041–2060), and 2090 (2081–2100). Model validation was done 
by comparing simulated suitability to reported occurrence of 
the respective crop in Cameroon using field data and the GBIF 
data base. A good model fit for maize (accuracy > 0.84), cocoa 
(accuracy > 0.87) and cassava (accuracy > 0.84) was achieved 
compared to reported crop occurrence, giving confidence in 
the application of the model in the climate change impact 
assessments in Cameroon. Crop suitability varies from 0 (not 
at all suitable) to 1 (highly suitable). We defined the following 
thresholds of above the 55th suitability percentile to define 
areas with no significant limitations to sustained production 
and stability over time and limited suitability below the 55th 
percentile based on the approach of Ramirez. After assessing 

Land-cover dataset Grassland [ha] Herbaceous crops [ha] Shrub-covered areas [ha]

Area from CCI_LC 1717542 4806836 2340560

Area from CGLS 2692340 2476072 3655974

Area from MODIS 1337538 6246500 1863

Land-use dataset Arable land [ha] Land under temporary meadows and pastures [ha] Land under permanent meadows and pastures [ha]

FAOSTAT land use 6200000 716073 2000000

HYDE grazing land 2676112

Table 2: Land-cover estimates for Cameroon for the period 2015 – 2019 based on three different land-cover products and land-use areas reported by 
FAOSTAT (FAO, 2023d). The category “Land under temporary meadows and pastures” is part of “Arable land” according to FAOSTAT typology. HYDE 
grazing land taken from the History Database of the Global Environment (HYDE, version 3.2.1, Klein Goldewijk et al. 2017).
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the individual crop suitability for the three crops in Cameroon, 
we combined the suitability of cocoa with the African plum 
tree (Dacryodes edulis) and mango tree (Mangifera indica) to 
understand which areas are suitable for adaptation through the 
implementation of agroforestry systems using the method by 
(Chemura et al., 2020). Changes in suitability proportion and 
distribution between the current and the projected climatic 
conditions were assessed by comparing areas between time 
periods and climatic scenarios.

Crop-specific parameters Climate data

Critical minimum temperature Monthly minimum temperature 

Minimum temperature Monthly mean temperature

Minimum optimum temperature Monthly total precipitation 

Maximum optimum temperature

Maximum temperature 

Minimum precipitation 

Minimum optimum precipitation 

Maximum optimum precipitation 

Maximum precipitation 

Crop growing period 
Crop specific soil pH

Yield loss assessment

Crop yield is a specific plant response to weather and soil 
variables and other field inputs determined by agronomic 
practice. These interactions can be formalised as equations 
representing a specific crop cultivar’s physiological response 
to environmental variables (Jones et al., 2003). Biophysical 
crop simulation models simultaneously incorporate interacting 
soil, plant, and field inputs as well as weather information. 
In this study we used APSIM which simulates crop growth as 
affected by temperature, radiation, soil moisture and nutrient 
supplies. The model requires daily weather data, soil profile 
parameters, detailed crop management information, and genetic 
coefficients of the chosen crop variety as inputs to simulate crop 
growth. APSIM calculates plant-available water, soil nitrogen, 
phosphorus, and carbon balances, as well as the vegetative and 
reproductive development of crops at a daily time step. 

We simulate production at grid level with 0.5° spacing (approx. 
55 km x 55 km) over Cameroon under current and future climate 
projections. In line with Chapters 1 and 2, we use the emissions 
scenarios SSP1-RCP2.6 and SSP3-RCP7.0 for yield projections in 
the years 2030 (2021–2040), 2050 (2041–2060), and 2090 (2081–
2100). Future climate projection data simulated by GCMs were 
obtained from ISIMIP3b (Lange, 2019a, 2019b).

For the assessment, we assume rain-fed conditions and no 
fertiliser application as a default management strategy. For 
maize, the cultivar hybred511 was used as the default cultivar 
due to its similarity to CMS8704, the most commonly grown 
maize cultivar in Cameroon. For cassava, a custom cultivar was 
parametrised to match observed yield levels in the country. 
The sowing date is automatically set by the model when the 
5-day rainfall sum exceeds 20 mm in predetermined sowing 
time windows by AEZ based on the agricultural calendar of 
Cameroon (ONACC, 2021). Simultaneously, harvest dates are also 
automatically calculated by ASPIM, indicating when the crop has 
reached maturity. For maize, sowing depth was set to 6 cm, row 
spacing to 90 cm, and plant density to 2 plants / m², according to 
common practice in Cameroon (IFATI & MINEFOP, 2022). For the 
assessment on cassava, we used various sources to parameterise 
and calibrate the model. We modelled cassava yields under rain-
fed smallholder conditions as this is the dominant system for 
cassava production in Cameroon. Planting dates, harvest dates, 
planting depth, row spacing and plant density were obtained by 
Temegne et al. (2015) and ISRIC soils were used as soil profiles 
for each level. We rely on yield statistics provided on province 
level by the Ministry of Agriculture in Cameroon for model 
calibration of cassava as well as the Global Dataset of Historical 
Yields GHDY for the maize model (Iizumi, 2019). 

The maize model has produced a good agreement at the grid level 
between long-term (1984–2014) average observed and simulated 
yields (a correlation of Pearson’s r=0.53 & Willmott’s index of 
agreement d=0.74). Regarding the inter-annual variability from 
1984–2014, the model has produced a correlation of r=0.45 and 
an index agreement of d=0.68 between observed and simulated 
yields at a national scale, indicating a sufficient model fit for 
analysing future scenarios. 

In contrast to suitability models that typically use an empirical 
model to measure the general seasonal, long-term climate 
conditions (employed in the previous section), this section uses 
biophysical mechanistic modelling of climate change impacts 
on agricultural yield. Yield is thereby calculated from the daily, 
possibly non-linear response to weather variables and other field 
inputs such as soil and farmer’s practices.

Table 3: Crop-specific parameters and climate data used in EcoCrop.
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Cost-benefit analyses

Improved seeds for maize

In two CBAs, we compare the costs and benefits of investing in 
heat-tolerant hybrid maize seeds with the costs and benefits of 
producing maize with conventional hybrid varieties until 2050. 

Scenario 1 and baseline: Non-adaptation (no action,  
climate impacts) 
The baseline of the calculation is a non-adaptation scenario in which 
a farmer produces rainfed maize with conventional hybrid maize 
varieties (CMS8704 und CMS8806). The model assumes extensive 
management without fertilisation and irrigation in order to 
represent smallholder farming systems. The market revenues of this 
production system are extrapolated until 2050 assuming a climate 
impact under a SSP1-RCP2.6 scenario and a SSP3-RCP7.0 scenario.

Scenario 2: Adaptation (action, climate change impacts)
In the adaptation scenario, the farmer switches to a heat-tolerant 
hybrid variety (based on H511), while keeping a rainfed and 
non-fertilized production system. The yields increase, but the 
improved seeds must be purchased from special seed companies 
at higher costs. The market revenues and costs of the investment 
are extrapolated until 2050 assuming a climate impact under a 
SSP1-RCP2.6 scenario and a SSP3-RCP7.0 scenario.

Data input and assumptions
The input data for this CBA has been obtained from literature and 
interviews with local key informants and is based on a number of 
assumptions. 

 � To calculate the investment costs, the cost delta resulting 
from the increased costs for the improved seed was used. 
Therefore, it has been assumed that the farmers in the 
non-adaptation scenario purchase their seeds for 650 
FCFA / kg, while the farmers in the adaptation scenario need 
to invest 2,000 CFAF per kg for the improved seeds (Centre 
de Documentation pour le Développement Rural, 2016). To 
cultivate one hectare an amount of 22.5 kg maize seeds is 
needed (ANADER, 2017).

 � It is further assumed that there are no additional 
transportation costs related to the purchase of new seeds. 
The rationale behind this assumption is that these costs 
depend on the distance between the farming household and 
the seed suppliers and would, therefore, vary depending on 
the region and location of assessment. 

 � Benefits are derived from the revenues resulting from the sale 
of maize and are made up of the producer price at the farm 
gate and the yields at national level as well as at the level of 
the Adamawa region, respectively: 

 � For the yields, projections for the improved and the tra-
ditional variety under different climate change scenarios 
and at the different regional levels were used. According to 
these projections, at the national level, the baseline yield 
for the CMS varieties is approximately 2,000 kg / ha, while 

the baseline yield of the heat-tolerant variety is assumed to 
be around 2,500 kg / ha. In the Adamawa region, the base-
line yield of the CMA varieties amounts to approximately 
2,400 kg / ha, while the baseline yield of the improved 
variety reaches 2,800 kg / ha. It can be seen from the yield 
projections that traditional varieties perform  better and 
make greater use of their potential in advantageous natu-
ral conditions, as is the case for the Adamawa region.

 � The average producer price for maize at the farm gate is 
between 10,000 and 15,000 FCFAF per bag of 100 kg (Inter-
view Mesmin Tchindjang). Hence, for the calculation an 
average producer price of 125 FCFA per kg maize was used. 

 � It is additionally assumed that the productivity of a farmer’s 
cultivated area increases due to autonomous technological 
change by 0.33 % per year. This is an extrapolation of previous 
maize yield increases over the last 30 years in Cameroon 
(FAOSTAT, 2023a). 

 � To depict the inflation rate, the exponential growth rate of the 
gross domestic product per capita of Cameroon from the last 
50 years was calculated; its value is 2.15 % (FAOSTAT, 2023b).

ISFM for cassava 

The CBA is based on a model that describes an average small-
scale farmer in Cameroon who grows cassava under two different 
scenarios: a non-adaptation scenario and an adaptation scenario. 
By comparing the costs and benefits of both scenarios, the CBA 
assesses whether adaptation makes sense from an economic 
point of view and in comparison to no adaptation. 

Baseline and scenarios 

Scenario 1 and baseline: Non-adaptation (no action, climate 
change impacts) 
The non-adaptation scenario serves as the baseline of this 
calculation. It assumes a farmer who produces cassava under 
‘business as usual’ without practicing ISFM. The model assumes 
an extensive management without fertilisation and irrigation 
in order to represent smallholder farming systems. The market 
revenues and costs of this system are extrapolated until 2050 
assuming a climate impact under SSP1-RCP2.6 scenario and 
SSP3-RCP7.0 scenario.

Scenario 2: Adaptation (action, climate change impacts)
In the adaptation scenario, the cassava farmer switches to the 
application of ISFM by enriching the soil with leafy materials 
from Tithonia diversifolia and Mucuna pruriens residues. The 
cassava yields are expected to increase, and the market revenues 
and costs of the production system are extrapolated until 2050 
assuming a climate impact under SSP1-RCP2.6 scenario and 
SSP3-RCP7.0 scenario.

Input data and assumptions 
The CBA is based on cost and benefit data from literature and 
interviews with key informants. Where specific data and information 
are missing, this data is complemented with assumptions. 
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 � In this CBA, two management practices are applied together: 
the harvest of Tithonia biomass mulch from off-farm 
resources that is transported, dried and then applied to the 
field; and the application of Mucuna biomass mulch that has 
been cultivated as a cover crop on the same field as cassava 
(Ngosong et al., 2015).

 � Since Tithonia grows wild, no costs for seeding, planting and 
tending incur. However, applying Tithonia to the field is labour 
intense. After the harvest, the leaves and fresh biomass of 
Tithonia are chopped into smaller pieces, dried and dropped 
into the soil with a hoe a couple of weeks before planting 
cassava (Bilong et al., 2022). In total, 20 tons of Tithonia dry 
mass are applied to a field of one hectare. The cost for this 
practice is estimated to be approximately FCFA 693,840 ha-1 
(Kimaru-Muchai et al., 2021), based on a daily labour rate of 
3,540 FCFA (Mutsonziwa et al., 2018). 

 � To estimate the costs for cultivating and applying Mucuna, 
a 1:1 intercropping system with cassava is assumed. Hence, 
for one hectare approximately 15 kg of Mucuna seeds are 
needed (Chakoma et al., 2016; Ngandjui Tchapga et al., 2023). 
It is further assumed that farmers need to buy Mucuna seeds 
only in the first year of adoption, while in the following years, 
they produce their own seeds. The cost of Mucuna seeds is 
estimated at 885 FCFA per kg (Ekyaligonza et al., 2022). Since 
planting is done together with cassava and plants are dried 
and left directly on the field, no extra labour costs are applied. 
For harvesting a workload of 21 days per ha was estimated 
(Ngosong et al., 2015). 

 � Benefits were estimated by calculating the revenues resulting 
from the yield delta that is expected from higher cassava 
productivity in the adaptation scenario. The yield model 
assumes a baseline yield for the untreated and unfertilized 
cassava in the non-adaptation scenario of approximately 10 
t / ha and a baseline yield of 30,300 t / ha for the ISFM-treated 
cassava in the adaptation scenario. The baseline yields were 
then extrapolated until 2050 by applying a climate change 
effect under a SSP126 and a SSP370 scenario. The average 
producer price for cassava at farm gate was estimated to 
be 160 FCFA per kg (FEWS NET, 2022; MINADER & WFP 
Cameroon, 2022).

 � The farmer generates an additional benefit with the 
cultivation of Mucuna, as it is assumed that the farmer sells 
the share of the seed production that is not used for self-
consumption. By assuming a yield of 2,329 kg / ha (Ngandjui 
Tchapga et al., 2023) and a market price of 400 CFA kg-1 
(FEWS NET, 2022), the additional income for the farmer 
through the selling of Mucuna beans was calculated. 

 � It is assumed that the productivity of the farmer’s area 
increases due to autonomous technological change by 0.26 % 
per year. This is an extrapolation of previous cassava yield 
increases over the last 30 years in Cameroon (FAO, 2023a). 

 � To depict the inflation rate, the exponential growth rate of 
the GDP per capita of Cameroon from the last 50 years was 
calculated, its value is 2.15 % (FAO, 2023b).

Agroforestry for cocoa 

Baseline and scenarios 
We assumed a conventional rainfed cocoa production system 
which is combined with agroforestry. The introduction of 
agroforestry fruit trees presents the adaptation measure in this 
calculation. As the CBA displays the changes made to the initial 
situation where a cocoa production system already exists, only 
the additional costs and benefits that are associated with the 
introduction of the agroforestry system will be analysed and 
projected until 2050. The goal is to compare the profitability of 
a conventional cocoa plantation in an agroforestry system with a 
cocoa plantation without agroforestry. The scenarios are defined 
as follows:

Scenario 1 and baseline: Non-adaptation (no action, climate 
change impacts) 
The baseline assumes a conventional rainfed cocoa production 
system without agroforestry in Cameroon. The market revenues 
and costs of the production system are extrapolated until 2050 
assuming a climate impact under SSP1-RCP2.6 scenario and a 
SSP3-RCP7.0 scenario. 

Scenario 2: Adaptation (action, climate change impacts)
For the adaptation scenario, the rainfed production of cocoa is 
combined with fruit trees in an agroforestry system in Cameroon. 
The tested fruit trees are:

 � African plum (Dacryodes edulis; Safou);

 � Avocado tree (Persea americana);

 � Mango tree (Magnifera indica).

The market revenues and costs of the production system are 
extrapolated until 2050 assuming a climate impact under SSP1-
RCP2.6 scenario and a SSP3-RCP7.0 scenario. 
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Input data and assumptions
The CBA calculates the costs and benefits of a model farming 
system that is based on several assumptions. The input data 
concerning costs and benefits was collected via literature review 
as well as from interviews with local farmers and consultants in 
Cameroon. The following aspects were taken into account: 

 � Three different fruit tree species – African plum, avocado 
and mango – are introduced as agroforestry trees into the 
cocoa farming system. All three trees provide several positive 
influencing factors for the intercropping system regarding 
environmental as well as economic aspects. Some of them 
are, however, difficult to quantify in monetary terms. Yet, 
all trees produce fruits that can be monetized as relevant 
by-products.

 � The model assumes that the three tree species are equally 
distributed across the production area. According to local 
consultants, in the area under investigation, the number 
of fruit trees per hectare is 20 (seven mango trees, seven 
avocado trees and six African plums) (see also Jaza Folefack et 
al., 2021). It is assumed that replanting is not necessary within 
the time span of this analysis. 

 � It is further assumed that no cocoa plants have to be removed 
to make space for the agroforestry trees. Hence, no cocoa 
yield reduction due to the introduction of the agroforestry 
trees is occurring.

 � The model assumes that no additional machinery or other 
equipment (like wheelbarrow, hoe, cutlass, boat, etc.) must 
be purchased for the planting and harvesting of the fruit 
trees, since these are already needed and available for the 
maintenance of the cocoa plantation itself. 

On the cost side, the following cost items were considered in the 
analysis:

 � Establishment costs per tree for the agroforestry system 
were extrapolated to the system of 20 trees analysed in this 
CBA. This data has been adjusted for inflation to reflect 
current cost structures. According to information from 
interviews with local experts and combined with current 
market information, we assume an average price for fruit 
tree seedlings between 1000 and 2000 FCFA (Agriculture au 
Cameroun, 2023b).

 � We included a daily labour rate of 3,540 FCFA to account for 
the labour needed to establish and maintain the agroforestry 
system, including planting, pruning and harvesting 
(Mutsonziwa and Kouame, 2018).

Concerning the benefit side, the following benefits were 
considered in the analysis: 

 � Based on an adequate management of the agroforestry-cocoa 
system (including pruning of trees and low planting density), 
we assume that the shading effect of fruit trees positively 
impacts cocoa yields from the sixth year onwards, leading 
to a yield increase of around 12 % (Andres et al., 2016). As 
mentioned in the introduction, the predicted effects of 
climate change on cocoa production (in terms of yield output) 
differ widely between countries and regions (see Schroth et 
al., 2016; Läderach et al., 2013; Ofori-Boateng, 2012), which 
is why for this scenario, we neither assume a negative nor a 
positive effect on cocoa production due to climate change.

 � For our calculation, we used national average yields based 
on FAO data of approx. 400 kg / ha (FAO, 2023a), which was 
supported by data in the literature (Jaza Folefack et al., 
2021; Lescuyer & Bassanaga, 2021). It is assumed that the 
productivity of the farmer’s area increases due to autonomous 
technological change² by 1.06 % per year. This is an 
extrapolation of previous cocoa yield increases over the last 
30 years in Cameroon (FAO, 2023a). 

 � According to local information, the producer price for one 
kilogram of cocoa beans in 2022 was between 900 up to 1,300 
CFA, depending on the distances of different villages to the 
next market. In alignment with Jaza Folefack et al. (2021) and 
Business in Cameroon (2022a, b) and based on the fact that 
cocoa prices vary a lot between months and regions (Reuters, 
2015), we calculated with an average kilogram price for cocoa 
beans of 1,000 FCFA. 

 � An additional income stream from the fruits is estimated 
to be achieved only after five to six years, depending on the 
species and climatic and edaphic conditions (Agriculture au 
Cameroun, 2023a). The revenues are based on yields per fruit 
tree ranging between 100 kg for avocado trees and 200 kg 
for African plums (Awono et al., 2002; Juma et al., 2019; Rey 
et al., 2004). Market prices were obtained from Jaza Folefack 
et al. (2021), according to whom the producer price is 700 
FCFA kg-1 for mangos and 500 FCFA kg-1 for avocados. 
Following Rimlinger et al. (2021) and backed up with local 
expert information, the producer price for African plums was 
estimated at 1000 FCFA kg-1. Due to the rapid perishability of 
fruits, we included post-harvest losses of 24 % for avocados 
(Dolaso et el., 2023), and applied it to African plums, too, 
due to the similar physio-chemical characteristics (Fotouo 
Makouate & Dongmo Lekagne, 2021). For mangos, a reduction 
of 32 % due to post-harvest losses was included in the 
calculation (Kamda Silapeux et al., 2021). 

2) The autonomous technological change rate is linked to a technological progress induced by improved management or input techniques.
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Annex II: Uncertainties 
The results presented in this study are subject to a number 
of uncertainties and limitations, which have to be thoroughly 
considered for correct interpretation as well as for drawing 
policy implications and recommendations. This chapter presents 
and discusses the uncertainties attached to the different types 
of analyses in this study and highlights their relevance in the 
Cameroonian context. 

Climate model data 
Despite vast improvements in recent decades, climate models 
continue to display substantial uncertainties in simulating the 
current climate (Tebaldi and Knutti, 2007). To remove the biases in 
the climate simulations and make the models suitable for our crop 
analysis, climate data is statistically processed (bias-adjustment) 
with the help of observational climate data sets (in our case W5E5). 
This approach has critical limitations (Ehret et al., 2012; Maraun, 
2016) as it adjusts the simulated data to fit to the observations 
without fixing the inability of the models to represent some physical 
processes of the earth’s system. Nevertheless, this step is necessary 
and does not change the fact that realistic simulations of climate 
impacts can still be obtained (J. Chen et al., 2013; Teutschbein & 
Seibert, 2012). We analysed the performance of each climate model 
to represent the current climate to ensure that none of the models 
show strong biases. Working with a climate model ensemble 
can additionally reduce individual model biases. In addition, the 
observational climate data sets themselves are imperfect, especially 
in areas with few weather stations. The used data sets are based on 
re-analysis models, satellite observations and stationary data. Due 
to the low density of long-term, reliable stationary data in Western 
Africa, the data sets have strong biases, especially on a fine-gridded 
scale. The analysis of future climate in this report is based on ten 
bias-adjusted GCMs produced under phase 3b of the ISIMIP project 
(https://www.isimip.org/protocol/3/) and is a sub-ensemble of the 
Coupled Model Intercomparison Project Phase 6 (CMIP6) used for 
the next IPCC report AR6.

Furthermore, future climate projections come with uncertainties, 
which can be seen in the diverging temperature and precipitation 
projections of different climate models. The GCMs project the 
same temperature trend over Africa, whereas precipitation 
projections show agreeing trends only in some regions (Niang et 
al., 2014). For general conclusions on future climate impacts, it is 
important to select models that cover the whole range of climate 
model outputs, namely applying models with wet and dry trends 
in precipitation projections (if applicable) as well as different 
magnitudes of projected temperature changes in the target 
region. The diverging trends related to precipitation projections 
of the ten chosen models show similar patterns as the earlier 
used complete CMIP5 model ensemble (Niang et al., 2014) and 
thus we can assume that the models are suitable to cover the 
range of possible future precipitation in Cameroon. 

The ten models cover a wide range of climate sensitivity with 
equilibrium climate sensitivity (ECS) values of 1.53–5.41 °C 
(Nijsse et al., 2020). Nevertheless, the selection of models shows 
a bias towards higher ECS, with five out of ten models having an 
ECS higher than 4.5 °C, which is, according to various studies, 
very unlikely (Nijsse et al., 2020). This means that the displayed 
temperature increases from five models show unlikely high future 
temperatures under increasing greenhouse gas concentrations 
and also the multi model median will shows a bias towards warm 
future projections.
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Crop models

Crop models are used to determine the share of weather-related 
variation in yields and to project impacts of changing climatic 
conditions on crop yields. Such analyses can support farmers in taking 
decisions related to yield stabilisation and crop yield improvement  
to cope with uncertain climatic conditions in the future.

Crop models are widely used to project these impacts – beyond 
the observed range of yield and weather variability – of climate 
change on future yields (Ewert et al., 2015; Folberth et al., 2012; 
Rosenzweig et al., 2014). However, when employing crop models 
some limitations need to be considered. For instance, limited data 
availability may restrict model fitting, such as a lack of information 
on growing season dates, yields, land use allocation, intercropping 
or information on fertiliser application (Müller et al., 2016). Also, 
the quality of soil data contributes to uncertain yield assessments 
(Folberth et al., 2016). Fragmented and imprecise weather 
data from regions with few weather stations further increase 
uncertainty (Van Wart et al., 2013), especially if highly localised 
weather data is needed as it is for this district study. Moreover, 
the selection of climate scenario data adds another layer of 
uncertainty (Müller et al. 2021). There are certain disagreements 
between the different model types – statistical, machine learning 
and process based – (Schauberger et al., 2017), but however, these 
two model types in this case study have been used in past studies 
and are unlikely to be inapt in general. 

Cost-benefit analysis

The cost-benefit analysis was conducted to evaluate the economic 
costs and benefits at the farm level of the three selected 
adaptation strategies. The CBAs considered a representative 
farmer by taking detailed household data on yields, costs and 
prices derived from survey samples. In addition, average yield 
and cost data were used to supplement and verify the household 
survey, as it is done in many standard CBAs. Such CBAs are, 
however, limited in terms of shedding light on the distribution 
of costs and benefits that an adaptation strategy may cause on a 
spectrum of farm groups, since an adaptation strategy may not 
necessarily affect all kinds of farm groups in the same way.

Assumptions regarding yields under climate change with and 
without adaptation were made based on crop yield simulations, 
which in turn were based on climate data predicted by climate 
models. Therefore, any uncertainty in climate models and crop 
models (see above) also translated into the analysis. 

Uncertainty on assumptions with regard to future changes in 
prices and costs and the choice of the discount rate are further 
increasing the uncertainty of the CBA results. However, the 
assumptions made in our study are based on studies conducted 
in comparable socio-economic conditions of Cameroon, different 
data sources were triangulated, and expert opinion sought. The 
results of the CBA should not be taken as definite outcomes 
to expect when implementing the adaptation strategies, but 
they can guide decision-making and provide case studies for 
adaptation scenarios. Assumptions regarding yields under 
climate change with and without adaptation were made based 
on crop yield simulations, which in turn were based on climate 
data predicted by climate models. Therefore, any uncertainty in 
climate models and crop models also translated into the analysis.
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