Ghana: Climate

Temperature

Figure 2: Air temperature projections for Ghana for different GHG emissions scenarios, relative to the year 1876.

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Ghana is projected to rise by 0.7 – 2.7°C (very likely range) by 2080 relative to year 2000, depending on the future GHG emissions scenario. Compared to 2000 levels, median climate model temperature increases over Ghana amount to approximately 0.8°C in 2030, 1.1°C in 2050, and 1.2°C in 2080 under the low emissions scenario RCP2.6. Under the medium/high emissions scenario RCP6.0, median climate model temperature increases amount to 1.0°C in 2030, 1.5°C in 2050, and 2.3°C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature greater than 35 °C) for Ghana for different GHG emissions scenarios.

In line with rising annual mean temperatures, the annual number of very hot days (days with daily maximum temperature greater than 35°C) is projected to rise substantially in particular over northern Ghana. Under the medium/high emission scenario RCP6.0, on average over all of Ghana, the median climate model projects 34 more very hot days per year in 2030 than in 2000, 55 more in 2050, and 94 more in 2080. In some parts, especially in the North of Ghana, this amounts to about 300 days per year by 2080.

Sea level rise

Figure 4: Sea level rise projections for the coast of Ghana for different GHG emissions scenarios, relative to the year 2000.

In response to globally increasing temperatures, the sea level off the coast of Ghana is projected to rise. Until 2050, very similar sea levels are projected under different GHG emissions scenarios. Under RCP6.0 and compared to year 2000 levels, the median climate model projects a sea level rise by 11 cm in 2030, 20 cm in 2050, and 39 cm in 2080. This threatens Ghana’s coastal communities and may cause saline intrusion in coastal waterways and groundwater reserves.

Precipitation

Figure 5: Annual mean precipitation projections for Ghana for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are substantially more uncertain than projections of temperature or sea level rise. Detecting trends in annual mean precipitation projections is complicated by large natural variability at multi-decadal time scales and considerable modelling uncertainty (Figure 5). Of the four climate models underlying this analysis, one projects a decline in annual mean precipitation over Ghana. According to the other three models, there will be no change. Therefore, our best estimate is that there will be almost no change in total precipitation per year until 2080 irrespective of the emissions scenario, yet this result is highly uncertain.

Heavy precipitation events

Figure 6: Projections of the number of days with heavy precipitation over Ghana for different GHG emissions scenarios.

In response to global warming, extreme precipitation events are expected to become more intense in many parts of the world due to the increased water vapor holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation is expected to increase. This tendency is also found in climate projections for Ghana, with climate models projecting a slight increase in the number of days with heavy precipitation events, from 7 days/year in 2000 to 8 days/year under RCP2.6 or 9 days/year under RCP6.0 by 2080. Central Ghana is subject to increased heavy precipitation, while for the far north, no change is projected by the multi-model mean.

Soil moisture

Figure 7: Soil moisture projections for Ghana for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters, it depends on both precipitation and evapotranspiration and therefore also on temperature as higher temperature translates to higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Ghana show a decreasing tendency. This tendency is stronger than the corresponding precipitation change projections, which reflects the influence of temperature rise on evapotranspiration.

Potential evapotranspiration

Figure 8: Potential evapotranspiration projections for Ghana for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if there were sufficient water available at and below the land surface. Since warmer air can hold more water vapor, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrology projections for Ghana indicate a stronger rise of potential evapotranspiration under RCP6.0 than under RCP2.6. Specifically, under RCP6.0, compared to year 2000 levels, potential evapotranspiration is projected to increase by 3.2% in 2030, 4.6% in 2050, and 7.4% in 2080.