Côte d’Ivoire: Climate

Temperature

Figure 2: Air temperature projections for Côte d’Ivoire for different GHG emissions scenarios.4

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Côte d’Ivoire is projected to rise by between 1.7 to 3.7 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Côte d’Ivoire amount to approximately 1.8 °C in 2030, 2.0 °C in 2050 and 2.1 °C in 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 1.7 °C in 2030, 2.2 °C in 2050 and 3.1 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Côte d’Ivoire for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise substantially and with high certainty, in particular over northern Côte d’Ivoire (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 33 more very hot days per year in 2030 than in 2000, 54 more in 2050 and 94 more in 2080. In some parts, especially in northern Côte d’Ivoire, this amounts to about 250 days per year by 2080.

Sea level rise

Figure 4: Projections for sea level rise off the coast of Côte d’Ivoire for different GHG emissions scenarios, relative to the year 2000.

In response to globally increasing temperatures, the sea level off the coast of Côte d’Ivoire is projected to rise (Figure 4). Until 2050, similar sea levels are projected under both emissions scenarios. Under RCP6.0 and compared to year 2000 levels, the median climate model projects a sea level rise by 11 cm in 2030, 20 cm in 2050 and 39 cm in 2080. This threatens Côte d’Ivoire’s coastal communities and may cause saline intrusion in coastal waterways and groundwater reservoirs, rendering water unusable for domestic use and harming biodiversity.

Precipitation

Figure 5: Annual mean precipitation projections for Côte d’Ivoire for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 5). Out of the four climate models underlying this analysis, two models project an increase in mean annual precipitation over Côte d’Ivoire under RCP6.0, while two models show no clear trend under the same scenario. Median model projections for RCP2.6 show a slight increase in precipitation until 2080, while median model projections for RCP6.0 show a stronger precipitation increase of 65 mm by 2080 compared to year 2000. Higher concentration pathways suggest an overall wetter future climate for Côte d’Ivoire.

Heavy precipitation events

Figure 6: Projections of the number of days with heavy precipitation over Côte d’Ivoire for different GHG emissions scenarios.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. This tendency is also found in climate projections for Côte d’Ivoire (Figure 6), with climate models projecting an increase in the number of days with heavy precipitation, from 7 days per year in 2000 to 8 (RCP2.6) and 10 days per year (RCP6.0) in 2080.

Soil moisture

Figure 7: Soil moisture projections for Côte d’Ivoire for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate into higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Côte d’Ivoire show a decrease of 3.0 % under RCP2.6 and 1.7 % under RCP6.0 by 2080 compared to the year 2000 (Figure 7). However, looking at the different models underlying this analysis, there is large year-to-year variability and modelling uncertainty, which makes it difficult to identify a clear trend.

Potential evapotranspiration

Figure 8: Potential evapotranspiration projections for Côte d’Ivoire for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Côte d’Ivoire indicate a stronger and more continuous rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 8). Under RCP6.0, potential evapotranspiration is projected to increase by 2.8 % in 2030, 4.0 % in 2050 and 6.6 % in 2080 compared to year 2000 levels.

4 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical warming over that time period.