Madagascar: Climate

Temperature

Figure 2: Air temperature projections for Madagascar for different GHG emissions scenarios.4

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Madagascar is projected to rise by 1.5 to 3.2 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Madagascar amount to approximately 1.6 °C in 2030 and 1.8 °C in both 2050 and 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 1.5 °C in 2030, 2.0 °C in 2050 and 2.8 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Madagascar for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise substantially and with high certainty, in particular over western Madagascar (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 5 more very hot days per year in 2030 than in 2000, 8 more in 2050 and 24 more in 2080. In some parts, especially on the western coast of Madagascar, this amounts to about 90 days per year by 2080.

Sea level rise

Figure 4: Projections for sea level rise off the coast of Madagascar for different GHG emissions scenarios, relative to the year 2000.

In response to globally increasing temperatures, the sea level off the coast of Madagascar is projected to rise (Figure 4). Until 2050, very similar sea levels are projected under both emissions scenarios. Under RCP6.0 and compared to year 2000 levels, the median climate model projects a sea level rise by 11 cm in 2030, 22 cm in 2050, and 43 cm in 2080. This threatens Madagascar’s coastal communities and may cause saline intrusion in coastal waterways and groundwater reservoirs.

Precipitation

Figure 5: Annual mean precipitation projections for Madagascar for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 5). Out of the four climate models underlying this analysis, two models project a decrease in mean annual precipitation over Madagascar and two models project little change. Median model projections show a precipitation decrease of 114 mm per year by 2080 under RCP6.0, while median model projections for RCP2.6 show a decrease at the beginning of the century, which settles at a decrease of 47 mm by 2080 compared to year 2000. Higher greenhouse gas emissions suggest an overall drier future for Madagascar.

Heavy precipitation events

Figure 6: Projections of the number of days with heavy precipitation over Madagascar for different GHG emissions scenarios, relative to the year 2000.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. This tendency is also reflected in climate projections for Madagascar (Figure 6), with climate models projecting a slight increase in the number of days with heavy precipitation events, from 7.0 days per year in 2000 to 7.5 and 7.2 days per year in 2080 under RCP2.6 and RCP6.0, respectively.

Soil moisture

Figure 7: Soil moisture projections for Madagascar for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and temperature, as higher temperatures translate to higher potential evapotranspiration. Projections for annual mean soil moisture values for the topsoil (from the surface to a depth of 1 metre) show a slight decrease under RCP2.6 and a stronger decrease of 5 % under RCP6.0 by 2080 compared to the year 2000 (Figure 7). However, looking at the different models underlying this analysis, there is large year-to-year variability and modelling uncertainty, with some models projecting a much stronger decrease in soil moisture.

Potential evapotranspiration

Figure 8: Potential evapotranspiration projections for Madagascar for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Madagascar indicate a stronger rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 8). Under RCP6.0, potential evapotranspiration is projected to increase by 3 % in 2030, 4 % in 2050 and 8 % in 2080 compared to year 2000 levels.

4 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical warming over that time period.

Mauritania: Climate

Temperature

Figure 2: Air temperature projections for Mauritania for different GHG emissions scenarios.4

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Mauritania is projected to rise by 2.0 to 4.5 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Mauritania amount to approximately 2.1 °C in 2030, 2.3 °C in 2050 and 2.5 °C in 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 2.1 °C in 2030, 2.7 °C in 2050 and 3.8 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Mauritania for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise substantially and with high certainty, in particular over western Mauritania (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 18 more very hot days per year in 2030 than in 2000, 27 more in 2050 and 49 more in 2080. In some parts, especially in south-western Mauritania, this amounts to about 300 days per year by 2080.

Sea level rise

Figure 4: Projections for sea level rise off the coast of Mauritania for different GHG emissions scenarios, relative to the year 2000.

In response to globally increasing temperatures, the sea level off the coast of Mauritania is projected to rise (Figure 4). Until 2050, very similar sea levels are projected under both emissions scenarios. Under RCP6.0 and compared to year 2000 levels, the median climate model projects a sea level rise by 10 cm in 2030, 19 cm in 2050 and 36 cm in 2080. This threatens Mauritania’s coastal communities and may cause saline intrusion in coastal waterways and groundwater reservoirs.

Precipitation

Figure 5: Annual mean precipitation projections for Mauritania for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 5). Out of the four climate models underlying this analysis, two models project no change in mean annual precipitation over Mauritania and two models project a decrease under RCP6.0. Under RCP2.6, one model projects an increase, one a decrease and two no change. Median model projections show a slight precipitation increase of 6 mm per year by 2080 under RCP2.6, while median model projections for RCP6.0 show a decrease of 11 mm by 2080 compared to year 2000.

Heavy precipitation events

Figure 6: Projections of the number of days with heavy precipitation over Mauritania for different GHG emissions scenarios, relative to the year 2000.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. However, this tendency is not reflected in climate projections for Mauritania (Figure 6), with climate models projecting a decrease in the number of days with heavy precipitation events, from 7 days per year in 2000 to 6 days per year in 2080 under RCP6.0. Under RCP2.6, no change is projected.

Soil moisture

Figure 7: Soil moisture projections for Mauritania for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate to higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Mauritania show a minimal increase under RCP2.6 and a decrease of 5 % under RCP6.0 by 2080 compared to the year 2000 (Figure 7). However, looking at the different models underlying this analysis, there is large year-to-year variability and modelling uncertainty, with some models projecting an increase and others projecting a decrease in soil moisture. Hence, a clear trend cannot be identified.

Potential evapotranspiration

Figure 8: Potential evapotranspiration projections for Mauritania for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Mauritania indicate a stronger rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 8). Under RCP6.0, potential evapotranspiration is projected to increase by 2.3 % in 2030, 3.6 % in 2050 and 6.2 % in 2080 compared to year 2000 levels.

4 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical
warming over that time period.

Chad: Climate

Temperature

Figure 2: Air temperature projections for Chad for different GHG emissions scenarios.4

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Chad is projected to rise by 2.1 to 4.3 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Chad amount to approximately 2.1 °C in 2030 and 2.5 °C in both 2050 and 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 2.1 °C in 2030, 2.6 °C in 2050 and 3.5 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Chad for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise with high certainty all over Chad (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 17 more very hot days per year in 2030 than in 2000, 31 more in 2050 and 49 more in 2080. In some parts, especially in central Chad, this amounts to more than 300 days per year by 2080.

Precipitation

Figure 4: Annual mean precipitation projections for Chad for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 4). Out of the four climate models underlying this analysis, one model projects a decreasing trend in mean annual precipitation over Chad, one projects no change and two models project strong increases under RCP6.0. Compared to year 2000, median model projections show an increase in mean annual precipitation by 32 mm under RCP2.6 and 50 mm under RCP6.0 until 2080.

Heavy precipitation events

Figure 5: Projections of the number of days with heavy precipitation over Chad for different GHG emissions scenarios, relative to the year 2000.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. This tendency is also found in climate projections for Chad (Figure 5), with climate models projecting an increase in the number of days with heavy precipitation, from 7 days per year in 2000 to 9 and 10 days per year in 2080 under RCP2.6 and RCP6.0, respectively.

Soil moisture

Figure 6: Soil moisture projections for Chad for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate to higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Chad show almost no change under either RCP by 2080 compared to the year 2000 (Figure 6). However, there is considerable modelling uncertainty, as different hydrological models project different directions of change, which makes it difficult to identify a clear trend.

Potential evapotranspiration

Figure 7: Potential evapotranspiration projections for Chad for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below the land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Chad indicate a stronger rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 7). Under RCP6.0, potential evapotranspiration is projected to increase by 2.1 % in 2030, 3.3 % in 2050 and 5.7 % in 2080 compared to year 2000 levels.

4 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical warming over that time period.

Côte d’Ivoire: Climate

Temperature

Figure 2: Air temperature projections for Côte d’Ivoire for different GHG emissions scenarios.4

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Côte d’Ivoire is projected to rise by between 1.7 to 3.7 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Côte d’Ivoire amount to approximately 1.8 °C in 2030, 2.0 °C in 2050 and 2.1 °C in 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 1.7 °C in 2030, 2.2 °C in 2050 and 3.1 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Côte d’Ivoire for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise substantially and with high certainty, in particular over northern Côte d’Ivoire (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 33 more very hot days per year in 2030 than in 2000, 54 more in 2050 and 94 more in 2080. In some parts, especially in northern Côte d’Ivoire, this amounts to about 250 days per year by 2080.

Sea level rise

Figure 4: Projections for sea level rise off the coast of Côte d’Ivoire for different GHG emissions scenarios, relative to the year 2000.

In response to globally increasing temperatures, the sea level off the coast of Côte d’Ivoire is projected to rise (Figure 4). Until 2050, similar sea levels are projected under both emissions scenarios. Under RCP6.0 and compared to year 2000 levels, the median climate model projects a sea level rise by 11 cm in 2030, 20 cm in 2050 and 39 cm in 2080. This threatens Côte d’Ivoire’s coastal communities and may cause saline intrusion in coastal waterways and groundwater reservoirs, rendering water unusable for domestic use and harming biodiversity.

Precipitation

Figure 5: Annual mean precipitation projections for Côte d’Ivoire for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 5). Out of the four climate models underlying this analysis, two models project an increase in mean annual precipitation over Côte d’Ivoire under RCP6.0, while two models show no clear trend under the same scenario. Median model projections for RCP2.6 show a slight increase in precipitation until 2080, while median model projections for RCP6.0 show a stronger precipitation increase of 65 mm by 2080 compared to year 2000. Higher concentration pathways suggest an overall wetter future climate for Côte d’Ivoire.

Heavy precipitation events

Figure 6: Projections of the number of days with heavy precipitation over Côte d’Ivoire for different GHG emissions scenarios.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. This tendency is also found in climate projections for Côte d’Ivoire (Figure 6), with climate models projecting an increase in the number of days with heavy precipitation, from 7 days per year in 2000 to 8 (RCP2.6) and 10 days per year (RCP6.0) in 2080.

Soil moisture

Figure 7: Soil moisture projections for Côte d’Ivoire for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate into higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Côte d’Ivoire show a decrease of 3.0 % under RCP2.6 and 1.7 % under RCP6.0 by 2080 compared to the year 2000 (Figure 7). However, looking at the different models underlying this analysis, there is large year-to-year variability and modelling uncertainty, which makes it difficult to identify a clear trend.

Potential evapotranspiration

Figure 8: Potential evapotranspiration projections for Côte d’Ivoire for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Côte d’Ivoire indicate a stronger and more continuous rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 8). Under RCP6.0, potential evapotranspiration is projected to increase by 2.8 % in 2030, 4.0 % in 2050 and 6.6 % in 2080 compared to year 2000 levels.

4 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical warming over that time period.

Uganda: Climate

Temperature

Figure 2: Air temperature projections for Uganda for different GHG emissions scenarios.

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Uganda is projected to rise by 1.5 to 3.5 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Uganda amount to approximately 1.4 °C in 2030, 1.7 °C in 2050 and 1.8 °C in 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 1.3 °C in 2030, 1.5 °C in 2050 and 2.3 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Uganda for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise substantially and with high certainty over most parts of Uganda (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 13 more very hot days per year in 2030 than in 2000, 26 more in 2050 and 39 more in 2080. In some parts, especially in northern Uganda, this amounts to about 150 days per year by 2080.

Precipitation

Figure 4: Annual mean precipitation projections for Uganda for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 4). Out of the three climate models underlying this analysis, two models project an increase and one model projects no change under RCP6.0, while under RCP2.6, two models project no change and one model projects a decrease in mean annual precipitation over Uganda. Median model projections show no change under RCP2.6 and an increase of 67 mm under RCP6.0 until 2080.

Heavy precipitation events

Figure 5: Projections of the number of days with heavy precipitation over Uganda for different GHG emissions scenarios, relative to the year 2000.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. This tendency can also be found in climate projections for Uganda. Under RCP6.0, median climate model projections show an increase in the number of days with heavy precipitation from 8 in the year 2000 to 10 in the year 2080. Under RCP2.6, the number of days with heavy precipitation is projected to not change (Figure 5).

Soil moisture

Figure 6: Soil moisture projections for Uganda for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate to higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Uganda hardly show any change under both RCPs by 2080 compared to the year 2000 (Figure 6). However, there is considerable modelling uncertainty as different hydrological models project different directions of change, which makes it difficult to identify a clear trend.

Potential evapotranspiration

Figure 7: Potential evapotranspiration projections for Uganda for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below the land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Uganda indicate a stronger and more continuous rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 7). Under RCP6.0, potential evapotranspiration is projected to increase by 1.6 % in 2030, 2.2 % in 2050 and 4.9 % in 2080 compared to year 2000 levels.

3 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical warming over that time period.

Kenya: Climate

Temperature

Figure 2: Air temperature projections for Kenya for different GHG emissions scenarios.3

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Kenya is projected to rise by 1.2 to 3.2 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Kenya amount to approximately 1.4 °C in 2030 and 1.7 °C in both 2050 and 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 1.3 °C in 2030, 1.6 °C in 2050 and 2.2 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Kenya for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise substantially and with high certainty, in particular over central and eastern Kenya (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 25 more very hot days per year in 2030 than in 2000, 36 more in 2050 and 59 more in 2080. In some parts, especially in northern and eastern Kenya, this amounts to about 300 days per year by 2080.

Sea level rise

Figure 4: Projections for sea level rise off the coast of Kenya for different GHG emissions scenarios, relative to the year 2000.

In response to globally increasing temperatures, the sea level off the coast of Kenya is projected to rise (Figure 4). Until 2050, very similar sea levels are projected under both emissions scenarios. Under RCP6.0 and compared to year 2000 levels, the median climate model projects a sea level rise by 10 cm in 2030, 21 cm in 2050, and 40 cm in 2080. This threatens Kenya’s coastal communities and may cause saline intrusion in coastal waterways and groundwater reservoirs.

Precipitation

Figure 5: Annual mean precipitation projections for Kenya for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 5). Out of the three climate models underlying this analysis, one model projects no change to a slight decrease in mean annual precipitation over Kenya under RCP6.0, while the other two models project an increase under the same scenario. Under RCP2.6, median model projections indicate a slight increase towards the year 2030 but an overall decrease towards the end of the century. Under RCP6.0, the projected precipitation increase is likely to intensify after 2050, reaching 53 mm per year at the end of the century compared to year 2000. Higher concentration pathways suggest an overall wetter future for Kenya.

Heavy precipitation events

Figure 6: Projections of the number of days with heavy precipitation over Kenya for different GHG emissions scenarios, relative to the year 2000.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. This tendency is also found in climate projections for Kenya (Figure 6), with climate models projecting an increase in the number of days with heavy precipitation, from 7 days per year in 2000 to 9 days per year in 2080 under RCP6.0. Under RCP2.6, the number of days with heavy precipitation remains unchanged.

Soil moisture

Figure 7: Soil moisture projections for Kenya for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate into higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Kenya show almost no change under either RCP (Figure 7). However, looking at the different models underlying this analysis, there is considerable year-to-year variability and modelling uncertainty, which makes it difficult to identify a clear trend.

Potential evapotranspiration

Figure 8: Potential evapotranspiration projections for Kenya for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below the land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Kenya indicate a stronger and more continuous rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 8). Under RCP6.0, potential evapotranspiration is projected to increase by 1.9 % in 2030, 3.0 % in 2050 and 4.5 % in 2080 compared to year 2000 levels.

3 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical warming over that time period.

Tanzania: Climate

Temperature

Figure 2: Air temperature projections for Tanzania for different GHG emissions scenarios.3

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Tanzania is projected to rise (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Tanzania amount to approximately 1.4 °C in 2030, 1.7 °C in 2050 and 1.6 °C in 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 1.4 °C in 2030, 1.7 °C in 2050 and 2.5 °C in 2080.

Very hot days

Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Tanzania for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise substantially and with high certainty, in particular over eastern Tanzania (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 6 more very hot days per year in 2030 than in 2000, 11 more in 2050 and 22 more in 2080. In some parts, especially in eastern Tanzania, this amounts to about 100 days per year by 2080.

Sea level rise

Figure 4: Projections for sea level rise off the coast of Tanzania for different GHG emissions scenarios, relative to the year 2000.

In response to globally increasing temperatures, the sea level off the coast of Tanzania is projected to rise (Figure 4). Until 2050, similar sea levels are projected under both emissions scenarios. Under RCP6.0 and compared to year 2000 levels, the median climate model projects a sea level rise by 11 cm in 2030, 21 cm in 2050 and 41 cm in 2080. This threatens Tanzania’s coastal communities and may cause saline intrusion in coastal waterways and groundwater reservoirs, rendering water unusable for domestic use and harming biodiversity.

Precipitation

Figure 5: Annual mean precipitation projections for Tanzania for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 5). Out of the three climate models underlying this analysis, none of the models projects a clear trend in mean annual precipitation over Tanzania under RCP6.0. Under RCP2.6, two models project a decrease, while for one model, the trend remains unclear. Median model projections for RCP2.6 show a decrease in precipitation by 42 mm until 2080, while median model projections for RCP6.0 show almost no change in precipitation by 2080 compared to year 2000.

Heavy precipitation events

Figure 6: Projections of the number of days with heavy precipitation over Tanzania for different GHG emissions scenarios, relative to the year 2000.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. This tendency is also found in climate projections for Tanzania (Figure 6), with climate models projecting a slight increase in the number of days with heavy precipitation, from 8 days per year in 2000 to 9 days per year in 2080 under RCP6.0. Under RCP2.6, the number of days with heavy precipitation does not change.

Soil moisture

Figure 7: Soil moisture projections for Tanzania for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate into higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Tanzania show a decrease of 4 % under both RCP2.6 and RCP6.0 by 2080 compared to the year 2000 (Figure 7). However, looking at the different models underlying this analysis, there is large year-to-year variability and modelling uncertainty, which makes it difficult to identify a clear trend.

Potential evapotranspiration

Figure 8: Potential evapotranspiration projections for Tanzania for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below the land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Tanzania indicate a stronger and more continuous rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 8). Under RCP6.0, potential evapotranspiration is projected to increase by 2.7 % in 2030, 3.8 % in 2050 and 7.1 % in 2080 compared to year 2000 levels.

3 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical warming over that time period.

Mali: Climate

Temperature

Figure 2: Air temperature projections for Mali for different GHG emissions scenarios.

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Mali is projected to rise by 2.0 to 4.6 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Mali amount to approximately 2.2 °C in 2030, 2.6 °C in 2050 and 2.7 °C in 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 2.2 °C in 2030, 2.8 °C in 2050 and 4.0 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Mali for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise dramatically and with high certainty all over Mali (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 23 more very hot days per year in 2030 than in 2000, 34 more in 2050 and 59 more in 2080. In some parts, especially in central Mali, this amounts to about 300 days per year by 2080.

Precipitation

Figure 4: Annual mean precipitation projections for Mali for different GHG emissions scenarios, relative to the year 2000.

Models project no clear trend for precipitation, which is due to high uncertainty and natural year-to-year variability (Figure 4). Out of the four climate models underlying this analysis, one model projects an increase in mean annual precipitation over Mali, one model projects no change, while two models project a decrease under RCP6.0. Median model projections for RCP2.6 show a slight decrease of 2 mm in precipitation until 2080, while median model projections for RCP6.0 show a stronger precipitation decrease of 10 mm by 2080 compared to year 2000.

Heavy precipitation events

Figure 5: Projections of the number of days with heavy precipitation over Mali for different GHG emissions scenarios, relative to the year 2000.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. However, this tendency cannot be found in climate projections for Mali: Two models project a decrease, one projects no change and only one model projects an increase. Median climate model projections show a slight decrease in the number of days with heavy precipitation from 7.7 in the year 2000 to 7.5 (RCP2.6) and 7.3 (RCP6.0) by 2080 (Figure 5).

Soil moisture

Figure 6: Soil moisture projections for Mali for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate to higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Mali show no change under RCP2.6 and a decrease of 3.7 % under RCP6.0 by 2080 compared to the year 2000 (Figure 6). However, there is considerable spatial variability and modelling uncertainty, as different hydrological models project different directions of change, which makes it difficult to identify a clear trend.

Potential evapotranspiration

Figure 7: Potential evapotranspiration projections for Mali for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below the land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Mali indicate a stronger rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 7). Under RCP6.0, potential evapotranspiration is projected to increase by 2.4 % in 2030, 3.7 % in 2050 and 7.0 % in 2080 compared to year 2000 levels.

Niger: Climate

Temperature

Figure 2: Air temperature projections for Niger for different GHG emissions scenarios.3

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Niger is projected to rise by 2.0 to 4.6 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Niger amount to approximately 2.1 °C in 2030, 2.5 °C in 2050 and 2.6 °C in 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 2.1 °C in 2030, 2.7 °C in 2050 and 3.7 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Niger for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise substantially and with high certainty, in particular over south-western Niger (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 16 more very hot days per year in 2030 than in 2000, 27 more in 2050 and 40 more in 2080. In some parts, especially in south-western Niger, this amounts to about 300 days per year by 2080.

Precipitation

Figure 4: Annual mean precipitation projections for Niger for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 4). Out of the four climate models underlying this analysis, one model projects almost no change in mean annual precipitation over Niger, one projects a decline and the other two models project an increase. Under RCP2.6, median model projections show a precipitation increase of 29 mm per year by 2080, while median model projections for RCP6.0 show a lower annual increase of 19 mm by 2080 compared to year 2000. The projected absolute changes in mean annual precipitation show high regional variations.

Heavy precipitation events

Figure 5: Projections of the number of days with heavy precipitation over Niger for different GHG emissions scenarios, relative to the year 2000.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. This tendency is also found in climate projections for Niger (Figure 5), with climate models projecting an increase in the number of days with heavy precipitation events, from 8 days per year in 2000 to 10 and 9 days per year in 2080 under RCP2.6 and RCP6.0, respectively.

Soil moisture

Figure 6: Soil moisture projections for Niger for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate to higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Niger show almost no change under either RCP by 2080 compared to the year 2000 (Figure 6). However, looking at the different models underlying this analysis, there is large year-to-year variability and modelling uncertainty, with some models projecting an increase and others projecting a decrease in soil moisture. Hence, a clear trend cannot be identified.

Potential evapotranspiration

Figure 7: Potential evapotranspiration projections for Niger for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Niger indicate a stronger and more continuous rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 7). Under RCP6.0, potential evapotranspiration is projected to increase by 2.2 % in 2030, 2.9 % in 2050 and 5.4 % in 2080 compared to year 2000 levels.

3 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical warming over that time period.

Burkina Faso: Climate

Temperature

Figure 2: Air temperature projections for Burkina Faso for different GHG emissions scenarios.4

In response to increasing greenhouse gas (GHG) concentrations, air temperature over Burkina Faso is projected to rise by 1.9 to 4.2 °C (very likely range) by 2080 relative to the year 1876, depending on the future GHG emissions scenario (Figure 2). Compared to pre-industrial levels, median climate model temperature increases over Burkina Faso amount to approximately 2.0 °C in 2030, 2.3 °C in 2050 and 2.4 °C in 2080 under the low emissions scenario RCP2.6. Under the medium / high emissions scenario RCP6.0, median climate model temperature increases amount to 2.0 °C in 2030, 2.6 °C in 2050 and 3.6 °C in 2080.

Very hot days

Figure 3: Projections of the annual number of very hot days (daily maximum temperature above 35 °C) for Burkina Faso for different GHG emissions scenarios.

In line with rising mean annual temperatures, the annual number of very hot days (days with daily maximum temperature above 35 °C) is projected to rise dramatically and with high certainty all over Burkina Faso (Figure 3). Under the medium / high emissions scenario RCP6.0, the multi-model median, averaged over the whole country, projects 32 more very hot days per year in 2030 than in 2000, 52 more in 2050 and 88 more in 2080. In some parts, especially in south-western Burkina Faso, this amounts to about 250 days per year by 2080.

Precipitation

Figure 4: Annual mean precipitation projections for Burkina Faso for different GHG emissions scenarios, relative to the year 2000.

Future projections of precipitation are less certain than projections of temperature change due to high natural year-to-year variability (Figure 4). Out of the four climate models underlying this analysis, two models project a decreasing trend in mean annual precipitation over Burkina Faso, while the other two models project an increase. Median model projections show strong interannual variability but no clear trend in mean annual precipitation until 2080 under either RCP.

Heavy precipitation events

Figure 5: Projections of the number of days with heavy precipitation over Burkina Faso for different GHG emissions scenarios, relative to the year 2000.

In response to global warming, heavy precipitation events are expected to become more intense in many parts of the world due to the increased water vapour holding capacity of a warmer atmosphere. At the same time, the number of days with heavy precipitation events is expected to increase. However, this tendency can only be found in half of the climate projections for Burkina Faso. Median climate model projections show no change in the number of days with heavy precipitation under either RCP (Figure 5). The year 2080 is projected to receive 8 days of heavy precipitation, which is equal to the year 2000.

Soil moisture

Figure 6: Soil moisture projections for Burkina Faso for different GHG emissions scenarios, relative to the year 2000.

Soil moisture is an important indicator for drought conditions. In addition to soil parameters and management, it depends on both precipitation and evapotranspiration and therefore also on temperature, as higher temperatures translate to higher potential evapotranspiration. Annual mean top 1-m soil moisture projections for Burkina Faso show a decrease of 2.5 % for both RCP2.6 and RCP6.0 by 2080 compared to the year 2000 (Figure 6). However, there is considerable modelling uncertainty as different hydrological models project different directions of change, which makes it difficult to identify a clear trend.

Potential evapotranspiration

Figure 7: Potential evapotranspiration projections for Burkina Faso for different GHG emissions scenarios, relative to the year 2000.

Potential evapotranspiration is the amount of water that would be evaporated and transpired if sufficient water was available at and below the land surface. Since warmer air can hold more water vapour, it is expected that global warming will increase potential evapotranspiration in most regions of the world. In line with this expectation, hydrological projections for Burkina Faso indicate a stronger rise of potential evapotranspiration under RCP6.0 than under RCP2.6 (Figure 7). Under RCP6.0, potential evapotranspiration is projected to increase by 2.7 % in 2030, 3.8 % in 2050 and 6.8 % in 2080 compared to year 2000 levels.

4 Changes are expressed relative to year 1876 temperature levels using the multi-model median temperature change from 1876 to 2000 as a proxy for the observed historical warming over that time period.