Madagascar: Infrastructure

Climate change is expected to significantly affect Madagascar’s infrastructure through extreme weather events. High precipitation amounts can lead to the flooding of roads, while high temperatures can cause roads, bridges and coastal infrastructures to develop cracks and degrade more quickly. This will require earlier replacement and lead to higher maintenance and replacement costs. The poorly developed railway network and limited inland waterway transportation increase Madagascar’s reliance on road transportation [24]. Roads, however, are in very poor condition with the majority being unpaved and difficult to access, especially during the rainy season. With an estimated road network of 31 640 km, Madagascar has one of the lowest road densities in the world [24]. Investments will have to be made to build climate-resilient road networks.

Extreme weather events also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities like Antananarivo, Toamasina or Antsirabe. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including steep slopes or riverbanks, where strong winds and flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have a low adaptive capacity to respond to such events due to high levels of poverty and lack of risk-reducing infrastructures. For example, the tropical Cyclone Belna made landfall on the north-western coast of Madagascar in December 2019, affecting 128 000 people [8]. The district of Soalala was hit particularly hard, recording damages to roads, electricity posts and wells [25]. Flooding and droughts will also have an impact on hydropower generation: Madagascar draws 29 % of its energy from hydropower, with a total installed capacity of 162 MW in 2014 [26]. However, variability in precipitation and climatic conditions could severely disrupt hydropower generation.

Despite the risk of infrastructure damage being likely to increase due to climate change, precise predictions of the location and the extent of exposure are difficult to make. For example, projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 4). In the case of Madagascar, median projections show little change in national road exposure to river floods (Figure 13). In the year 2000, 1.6 % of major roads were exposed to river floods at least once a year. By 2080, this value is projected to not change under RCP6.0 and to increase to 2.0 % under RCP2.6. This difference is in line with precipitation trends for Madagascar. The exposure of urban land area to river floods is projected to change only slightly under both RCP (Figure 14).

Figure 13: Projections of major roads exposed to river floods at least once a year for Madagascar for different GHG emissions scenarios.
Figure 14: Projections of urban land area exposed to river floods at least once a year for Madagascar for different GHG emissions scenarios.

With the exposure of the GDP to heatwaves projected to increase from around 0.3 % in 2000 to 2.4 % (RCP2.6) and 4.8 % (RCP6.0) by 2080 (Figure 15), it is recommended that policy planners start identifying heat-sensitive economic production sites and activities, and integrating climate adaptation strategies such as improved solar-powered cooling systems, “cool roof” isolation materials or switching the operating hours from day to night [27].

Figure 15: Exposure of GDP in Madagascar to heatwaves for different GHG emissions scenarios.

References

[24] Logistics Cluster and WFP, “Madagascar Logistics Infrastructure.” Online available: https://dlca.logcluster.org/display/public/DLCA/2+Madagascar+Logistics+Infrastructure [Accessed: Sep. 30, 2020].
[25] OCHA, “Southern Africa: Cyclone Belna (Flash Update No. 5),” New York, 2019.
[26] World Bank, “Small Hydropower Resource Mapping in Madagascar: Hydropower Atlas,” Washington, D.C., 2017.
[27] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings,” Energy Build., vol. 89, pp. 142–152, 2015, doi: 10.1016/j.enbuild.2014.12.034.

Mauritania: Infrastructure

Climate change is expected to significantly affect Mauritania’s infrastructure through extreme weather events. High precipitation amounts can lead to the flooding of roads, while high temperatures can cause roads, bridges and protective structures to develop cracks and degrade more quickly. This will require earlier replacement and lead to higher maintenance and replacement costs. The near-total absence of passenger railways and limited airport facilities increase Mauritania’s reliance on road transportation [23]. The country has only 2 743 km of paved roads, which is one of the lowest densities on the continent [23]. While some roads become impassable during the rainy season, cutting off villages and rural communities, others are obscured by drifting sand during the dry season [23]. Investments will have to be made to build climate-resilient and safe road networks.

Extreme weather events will also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities like Nouakchott or Nouadhibou. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including steep slopes or river banks, where flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have low adaptive capacity to respond to such events due to high levels of poverty and a lack of risk-reducing infrastructures. For example, heavy precipitation events during the 2019 rainy season caused flooding in the region of Guidimakha in southern Mauritania, affecting 33 600 people [24]. The city of Sélibaby was hit particularly hard, recording damages to houses, markets and infrastructure as well as disruptions to water and energy supplies. Flooding and droughts will also affect hydropower generation: Together with Senegal and Mali, Mauritania shares the Manantali Dam, which has a total installed capacity of 200 MW and which is located on the Bafing River in Mali, a tributary of the Senegal River [25]. However, variability in precipitation and climatic conditions could severely disrupt hydropower generation in the whole region.

Despite the risk of infrastructure damage being likely to increase, precise predictions of the location and the extent of exposure are difficult to make. For example, projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 4). In the case of Mauritania, median projections show almost no change in national road exposure to river floods (Figure 13). In the year 2000, 0.4 % of major roads were exposed to river floods at least once a year. By 2080, this value is projected to not change under RCP2.6 and to decrease to 0.3 % under RCP6.0. In a similar way, exposure of urban land area to river floods is projected to change only marginally under RCP6.0 from 0.05 % in 2000 to 0.14 % in 2080, with no change under RCP2.6 (Figure 14).

Figure 13: Projections of major roads exposed to river floods at least once a year for Mauritania for different GHG emissions scenarios.
Figure 14: Projections of urban land area exposed to river floods at least once a year for Mauritania for different GHG emissions scenarios.

With the exposure of the GDP to heatwaves projected to increase dramatically from around 6 % in 2000 to 25 % (RCP2.6) and 35 % (RCP6.0) by 2080 (Figure 15), it is recommended that policy planners start identifying heat-sensitive economic production sites and activities, and integrating climate adaptation strategies such as improved solar-powered cooling systems, “cool roof” isolation materials or switching the operating hours from day to night [26].

Figure 15: Exposure of GDP in Mauritania to heatwaves for different GHG emissions scenarios.

References

[23] Logistics Cluster and WFP, “Mauritanie Infrastructures Logistiques,” 2020. Online available: https://dlca.logcluster.org/display/public/DLCA/2+Mauritania+Infrastructures+Logistiques [Accessed: 14-Jul-2020].
[24] IFRC, “Emergency Plan of Action (EPoA): Mauritania – Floods in Guidimakha,” Geneva, Switzerland, 2019.
[25] N. K. Dia, A. A. Bayod-Rújula, N. Mamoudou, M. Diallo, C. S. Ethmane, and B. O. Bilal, “Energy Context in Mauritania,” Energy Sources, Part B Econ. Plan. Policy, vol. 12, no. 2, pp. 182–190, 2017.

Chad: Infrastructure

Climate change is expected to significantly affect Chad’s infrastructure sector through extreme weather events, such as flooding and heatwaves. High precipitation amounts can lead to flooding of roads, while high temperatures can cause roads, bridges and protective structures to develop cracks and degrade more quickly. The absence of railways, seasonal navigability of rivers and limited airport facilities increase Chad’s reliance on road transportation [30]. The country’s road density ranges from 40.5 km per 1 000 km2 in the south to only 6.4 km per 1 000 km2 in the north, making it one of the lowest on the continent [30]. Many unpaved roads become impassable during the rainy season, cutting off villages and rural communities [30]. Investments will have to be made to build climate-resilient road networks.

Extreme weather events will also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities like N’Djamena, Moundou or Sarh. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including river banks, where flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have low adaptive capacity to respond to such events due to high levels of poverty and a lack of risk-reducing infrastructures. In 2012, heavy floods in southern Chad affected up to 700 000 people [31], with the most affected regions being Tandjilé, Mayo-Kebbi Est, Mayo-Kebbi Ouest and Sila [32]. At least 255 000 hectares of cropland and 96 000 houses were destroyed [32].

Despite the risk of infrastructure damage being likely to increase, precise predictions of the location and the extent of exposure are difficult to make. For example, projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 4). In the case of Chad, projections show an increase in the exposure of major roads to river floods from 1.4 % in 2000 to 2.2 % by 2080 under RCP6.0. Under RCP2.6, projections indicate an increase towards mid-century but no overall change by 2080 (Figure 12). Exposure of urban land area to floods is projected to not change under RCP2.6 and to increase slightly under RCP6.0, from 0.2 % in 2000 to 0.4 % in 2080 (Figure 13).

Figure 12: Projections of major roads exposed to river floods at least once a year for Chad for different GHG emissions scenarios.
Figure 13: Projections of urban land area exposed to river floods at least once a year for Chad for different GHG emissions scenarios.

While three out of four models project an increase in the exposure of the GDP to heatwaves, its magnitude is uncertain, with one model projecting strong and two models projecting more moderate increases. Median model projections for RCP2.6 show an increase from 2.2 % in 2000 to 8.0 % by 2080. Under RCP6.0, exposure is projected to rise to 14 % over the same period (Figure 14). It is recommended that policy planners start identifying heat-sensitive economic production sites and activities, and integrating climate adaptation strategies, such as improved, solar-powered cooling systems, “cool roof” isolation materials or switching the operating hours from day to night [33].

Figure 14: Exposure of GDP in Chad to heatwaves for different GHG emissions scenarios.

References

[30] Logistics Cluster and WFP, “Chad Logistics Infrastructure,” 2020. Online available: https://dlca.logcluster.org/display/public/DLCA/2+Chad+Logistics+Infrastructure [Accessed: 27-Apr-2020].
[31] OCHA, “Humanitarian Bulletin: Chad (January 2013),” N’Djamena, Chad, 2013.
[32] OCHA, “Chad: Humanitarian Snapshot (24 September 2012),” N’Djamena, Chad, 2012.
[33] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings,” Energy Build., vol. 89, pp. 142–152, 2015.

Côte d’Ivoire: Infrastructure

Climate change is expected to significantly affect Côte d’Ivoire’s infrastructure sector through extreme weather events. High precipitation amounts can lead to flooding of roads and railroads, especially in low-lying coastal areas, while high temperatures can cause roads, bridges and protective structures to develop cracks and degrade more quickly. Transport infrastructure is vulnerable to extreme weather events, yet essential for agricultural livelihoods. Roads serve communities to trade goods and access healthcare, education, credit and other services, especially in rural and remote areas. Côte d’Ivoire’s transport is dominated by road transport, handling almost all of its internal freight traffic [27]. Furthermore, it is closely linked with landlocked Burkina Faso through the Abidjan-Ouagadougou corridor, an important route for both road and rail transport [28]. The reliance on only few transport routes increases the sector’s vulnerability to climate impacts. Hence, investments will have to be made into building climate-resilient transportation networks.

Extreme weather events will also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities such as Abidjan or Bouaké. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including riverbanks and coastal areas, where flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have low adaptive capacity to respond to such events due to high levels of poverty and lack of risk-reducing infrastructures. For example, heavy rains in October 2019 have caused flooding in Abidjan, Aboisso, Grand Bassam, Ayamé and Man. A total of 12 900 people were affected by this flooding including 12 fatalities [29]. Flooding and droughts will also affect hydropower generation: Côte d’Ivoire draws 40 % of its energy from hydropower and has been investing in large-scale hydropower projects including the Soubré Dam, which was inaugurated in 2017 and is the country’s largest dam with a capacity of 275 MW [30], [31]. However, variability in precipitation and climatic conditions could severely disrupt hydropower generation.

Despite the risk of infrastructure damage being likely to increase due to climate change, precise predictions of the specific location and extent of exposure are difficult to make. For example, projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 5). In the case of Côte d’Ivoire, projections show a slight increase in the exposure of major roads to river floods under both RCPs: In 2000, 0.5 % of major roads were exposed to river floods at least once a year, while by 2080, this value is projected to increase to 0.6 % under RCP2.6 and to 1.3 % under RCP 6.0 (Figure 13). In a similar way, exposure of urban land area to river floods is projected to increase only slightly, from 0.04 % in 2000 to 0.2 % in 2080 under both RCPs (Figure 14). However, projections of exposure of major roads and urban land area to river floods are characterised by high modelling uncertainty, which is why no reliable estimations on future occurrence of river floods can be made.

Figure 13: Projections of major roads exposed to river floods at least once a year for Côte d’Ivoire for different GHG emissions scenarios.
Figure 14: Projections of urban land area exposed to river floods at least once a year for Côte d’Ivoire for different GHG emissions scenarios.

With the exposure of the GDP to heatwaves projected to increase from around 7 % in 2000 to 31 % (RCP2.6) and 27 % (RCP6.0) by 2080 (Figure 15), it is recommended that economic policy planners start identifying heat-sensitive production sites and activities, and integrating climate adaptation strategies such as improved solar-powered cooling systems, “cool roof” isolation materials or switching operation hours from day to night [32].

Figure 15: Exposure of GDP in Côte d’Ivoire to heatwaves for different GHG emissions scenarios.

References

[27] Oxford Business Group, “Côte d’Ivoire Revamps Infrastructure in Transport Sector to Support Economic Growth.” Online available: https://oxfordbusinessgroup.com/overview/adding-capacity-revampingsector-infrastructure-support-economic-growth [Accessed: 17-Feb-2020].
[28] V. Foster and N. Pushak, “Côte d’Ivoire’s Infrastructure: A Continental Perspective,” Washington, D.C., 2011. [29] International Federation of Red Cross and Red Crescent Societies, “Emergency Plan of Action (EPoA) Côte d’Ivoire: Floods,” Geneva, Switzerland, 2019.
[30] USAID, “Power Africa: Côte d’Ivoire,” Washington, D.C., 2019.
[31] Reuters, “Ivory Coast to Bring 275 MW Hydropower Plant Online Next Month,” 2017. Online available: https://www.reuters.com/article/ivorycoast-electricity/ivory-coast-to-bring-275-mw-hydropower-plantonline-next-month-idUSL5N1GJ4Z8 [Accessed: 17-Feb-2020].
[32] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings,” Energy Build., vol. 89, pp. 142–152, 2015.

Uganda: Infrastructure

Climate change is expected to significantly affect Uganda’s infrastructure sector through extreme weather events, such as flooding and droughts. High precipitation amounts can lead to flooding of transport infrastructure including roads, railroads and airports, while high temperatures can cause roads, bridges and protective structures to develop cracks and degrade more quickly. Transport infrastructure is essential for social, economic and agricultural livelihoods: Roads serve communities to trade their goods and access healthcare, education, credit as well as other services, especially in rural and remote areas. Uganda’s transport sector is dominated by road transport accounting for 90 % of passenger and freight traffic [23]. Compared to other low-income countries in Africa, road density in Uganda is high at 365 km / 1 000 km². However, especially district roads which connect to rural areas are in poor condition, limiting accessibility of rural areas, especially during the rainy season [23]. Investments will have to be made into building climate-resilient road networks.

Extreme weather events will also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities like Kampala or Gulu. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including river banks, where flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have low adaptive capacity to respond to such events due to high levels of poverty and a lack of riskreducing infrastructures. For example, heavy rains in December 2019 caused flooding and landslides in different regions across Uganda, particularly affecting communities in the east of the country [24]. At least 38 people have died and a total of 300 000 people were affected [24]. Flooding and droughts will also affect hydropower generation: Uganda draws 77 % of its energy from hydropower with a total installed capacity of 914 MW in 2017 [25]. However, variability in precipitation and climatic conditions could severely disrupt hydropower generation.

The risk of infrastructure damage in Uganda is likely to increase. However, projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 4). For Uganda, projections of major roads exposed to river floods are characterised by high modelling uncertainty with median projections showing a decrease of 5 % under RCP2.6 and an increase of 9 % under RCP6.0 by 2080 compared to 7 % in the year 2000 (Figure 12). Exposure of urban land area to river floods is projected to hardly change under RCP2.6 and to increase from 0.3 to 0.9 % under RCP6.0 (Figure 13).

Figure 12: Projections of major roads exposed to river floods at least once a year for Uganda for different GHG emissions scenarios.
Figure 13: Projections of urban land area exposed to river floods at least once a year for Uganda for different GHG emissions scenarios.

With the exposure of the GDP to heatwaves projected to increase from 0.2 % in 2000 to 2.8 % (RCP2.6) and 9.6 % (RCP6.0) by the end of the century (Figure 14), it is recommended that policy planners start identifying heat-sensitive production sites and activities, and integrating climate adaptation strategies such as improved solar-powered cooling systems, “cool roof” isolation materials or switching of hours of operation from day to night [26].

Figure 14: Exposure of GDP in Uganda to heatwaves for different GHG emissions scenarios.

References

[23] R. Ranganathan and V. Foster, “Uganda’s Infrastructure: A Continental Perspective,” Washington, D.C., 2012.
[24] OCHA, “Uganda: Floods and Landslides,” New York, 2019.
[25] Electric Regulatory Authority, “Annual Report FY 2016–17,” Kampala, Uganda.
[26] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings,” Energy Build., vol. 89, pp. 142–152, 2015.

Kenya: Infrastructure

Climate change is expected to significantly affect Kenya’s infrastructure sector through extreme weather events, such as floods and droughts. High precipitation amounts can lead to flooding of transport infrastructure, especially in coastal areas with low altitudes, while high temperatures can cause roads, bridges and protective structures to develop cracks and degrade more quickly. This will require earlier replacement and lead to higher maintenance and replacement costs. Transport infrastructure is vulnerable to extreme weather events, yet essential for agricultural livelihoods. Roads serve communities to trade goods and access healthcare, education, credit and other services. Especially in rural areas, Kenya’s transport sector is dominated by road transport, which accounts for 99 % of non-aviation transport GHG emissions [25]. Investments will have to be made into building climate-resilient road networks.

Extreme weather events will also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities such as Nairobi or Mombasa. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including riverbanks and coastal areas, where flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have low adaptive capacity to respond to such events due to high levels of poverty and lack of risk-reducing infrastructures. According to a study on urban flooding in Kibera, Nairobi’s largest informal settlement with a population of more than 300 000, over 50 % of residents reported that their houses were flooded in the 2015 rainy season [26]. The study documents various consequences including death, outbreaks of cholera and diarrhoea as well as the destruction of houses and other types of property.

Despite the risk of infrastructure damage being likely to increase due to climate change, precise predictions of the location and extent of exposure are difficult to make. For example, projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 5). In Kenya, projections show a slight decrease in the exposure of major roads to river floods under RCP2.6 and an increase under RCP6.0. In the year 2000, 1.9 % of major roads were exposed to river floods at least once a year, while by 2080, this value is projected to change to 2.3 % under RCP6.0 (Figure 13). In a similar way, exposure of urban land area to river floods is projected to barely change under RCP2.6, whilst increasing from 0.11 % in 2000 to 0.13 % in 2080 under RCP6.0 (Figure 14).

Figure 13: Projections of major roads exposed to river floods at least once a year for Kenya for different GHG emissions scenarios.
Figure 14: Projections of urban land area exposed to river floods at least once a year for Kenya for different GHG emissions scenarios.

The exposure of the GDP to heatwaves is projected to increase from around 0.7 % in 2000 to 5.7 % (RCP2.6) and 7.0 % (RCP6.0) by the end of the century (Figure 15). The very likely range of GDP exposure to heatwaves widens from 0.7–1.4 % in 2000 to 1.7–7.1 % (RCP2.6) and 6.7–11.1 % (RCP6.0) in 2080. Hence, it is recommended that economic policy makers start identifying heat-sensitive production sites and activities, and integrating climate adaptation strategies, such as improved solar-powered cooling systems, “cool roof” isolation materials or switching the operating hours from day to night [27].

Figure 15: Exposure of GDP in Kenya to heatwaves for different GHG emissions scenarios.

References

[25] L. Cameron, L. Würtenberger, and S. Stiebert, “Kenya’s Climate Change Action Plan: Mitigation. Chapter 7: Transport,” Nairobi, Kenya, 2012.
[26] KDI – Kounkuey Design Initiative, “Building Urban Flood Resilience: Integrating Community Perspectives, Final Report 2015–2016,” Nairobi, Kenya, 2016.
[27] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings,” Energy Build., vol. 89, pp. 142–152, 2015.

Tanzania: Infrastructure

Climate change is expected to significantly affect Tanzania’s infrastructure sector through extreme weather events. High precipitation amounts can lead to flooding of transport infrastructure, especially in the coastal areas, while high temperatures can cause roads, bridges and protective structures to develop cracks and degrade more quickly. This will require earlier replacement and lead to higher maintenance and replacement costs. Tanzania’s transport sector is dominated by road transport, which accounts for 80 % of passenger traffic and 95 % of freight traffic [24]. Transport infrastructure is very vulnerable to extreme weather events, yet essential for social, economic and agricultural livelihoods. Roads serve communities to trade goods and access healthcare, education, credit as well as other services, especially in rural and remote areas. Overall, Tanzania has one of the lowest paved-road densities in Africa, relying on few major roads [24]. Thus, investments will have to be made to build climate-resilient road networks.

Extreme weather events will also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities such as Dar es Salaam or Mwanza. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including riverbanks and coastal areas, where flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have low adaptive capacity to respond to such events due to high levels of poverty and lack of risk-reducing infrastructures. The flooding-poverty nexus is particularly strong in Dar es Salaam, where many households experience floods on an annual basis and even during average precipitation events [25]. In April 2018, 11 976 people in Dar es Salaam have been affected by a flood event [26]. 42 houses and 21 latrines collapsed, and 342 houses were severely damaged. Flooding and droughts will also affect hydropower generation: Tanzania is planning to increase its hydropower capacity from 0.5 gigawatts in 2015 to a planned volume of 3.4 gigawatts in 2030. However, variability in precipitation and climatic conditions could severely affect river levels and disrupt hydropower generation [27].

Despite the risk of infrastructure damage being likely to increase, precise predictions of the specific location and extent of exposure are difficult to make. For example, projections of river flooding are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 5). In Tanzania, projections show no change in the exposure of major roads to river floods under RCP2.6 and a slight increase under RCP6.0 (Figure 13). In 2000, 1.3 % of major roads were exposed to river floods at least once a year, while by 2080, this value is projected to slightly increase to 1.5 % under RCP6.0. In a similar way, exposure of urban land area to river floods is projected to increase only under RCP6.0, from 0.11 % in 2000 to 0.24 % in 2080 (Figure 14).

Figure 13: Projections of major roads exposed to river floods at least once a year for Tanzania for different GHG emissions scenarios.
Figure 14: Projections of urban land area exposed to river floods at least once a year for Tanzania for different GHG emissions scenarios.

The exposure of the GDP to heatwaves is projected to increase from around 2 % in 2000 to 6 % (RCP2.6) and 16 % (RCP6.0) by the end of the century (Figure 15). It is recommended that policy makers start identifying heat-sensitive economic production sites and activities, and integrating climate adaptation strategies such as improved solar-powered cooling systems, “cool roof” isolation materials or switching the operating hours from day to night [28].

Figure 15: Exposure of GDP in Tanzania to heatwaves for different GHG emissions scenarios.

References

[24] United Republic of Tanzania Vice President’s Office, “National Climate Change Strategy,” Dodoma, Tanzania, 2012.
[25] T. Sakijege, J. Lupala, and S. Sheuya, “Flooding, Flood Risks and Coping Strategies in Urban Informal Residential Areas: The Case of Keko Machungwa, Dar Es Salaam, Tanzania,” Jamba J. Disaster Risk Stud., vol. 4, no. 1, pp. 1–10, 2012.
[26] IFRC, “Emergency Plan of Action Final Report: Tanzania Floods,” Geneva, Switzerland, 2019.
[27] D. Conway, P. Curran, and K. E. Gannon, “Policy Brief: Climate Risks to Hydropower Supply in Eastern and Southern Africa,” London and Leeds, UK, 2018.
[28] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings,” Energy Build., vol. 89, pp. 142–152, 2015.

Mali: Infrastructure

Climate change is expected to significantly affect Mali’s infrastructure sector through extreme weather events, such as flooding and droughts (Figure 12). High precipitation amounts can lead to flooding of roads, while high temperatures can cause roads, bridges and protective structures to develop cracks and degrade more quickly. Transport infrastructure is very vulnerable to extreme weather events, yet essential for social, economic and agricultural livelihoods. Roads serve communities to trade their goods and access healthcare, education, credit as well as other services, especially in rural and remote areas. The absence of railways, seasonal navigability of the Niger River and limited airport facilities increase Mali’s reliance on road transportation. Yet, Mali has one of the lowest road densities in Africa with an average of 38 km / 1 000 km² [24]. Furthermore, only 17 % of Mali’s rural population lives within 2 km of an all-season road, which is 60 % below the African average [24]. Therefore, investments will have to be made into building climate-resilient road networks.

Extreme weather events will also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities like Bamako or Sikasso. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including river banks, where flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have low adaptive capacity to respond to such events due to high levels of poverty and a lack of risk-reducing infrastructures. For example, heavy rains in July and August 2018 caused flooding in different regions across Mali, particularly affecting communities along the Niger River including Bamako, Gao, Koulikoro, Mopti, Segou and Timbuktu [25]. A total of 137 000 people were affected (the highest number compared to the previous 6 years), 6 350 houses were destroyed and 2 680 head of cattle were killed [25]. Flooding and droughts will also affect hydropower generation: Mali draws 60 % of its energy from hydropower, with a total installed capacity of 528 MW in 2014 [26]. However, variability in precipitation and climatic conditions could severely disrupt hydropower generation.

Despite the risk of infrastructure damage being likely to increase due to climate change, precise predictions of the location and the extent of exposure are difficult to make. For example, projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 4). In the case of Mali, projections for both RCP2.6 and RCP6.0 show almost no change in the exposure of major roads to river floods. In 2000, 1.7 % of major roads were exposed to river floods at least once a year, while by 2080, this value is projected to change to 1.9 % under RCP2.6 and to 2.0 % under RCP6.0. Similarly, exposure of urban land area to river floods is projected to hardly change under either RCP (Figure 13).

Figure 12: Projections of major roads exposed to river floods at least once a year for Mali for different GHG emissions scenarios.
Figure 13: Projections of urban land area exposed to river floods at least once a year for Mali for different GHG emissions scenarios.

While three of four models project an increase in the exposure of the GDP to heatwaves, the magnitude of the increase is subject to high modelling uncertainty with one model projecting very strong and two models projecting weaker increases (Figure 14). Median model projections for RCP2.6 show an increase from 2.2 % in 2000 to 8.7 % by 2080, whereas under RCP6.0, exposure is projected to increase to 15.2 %. It is recommended that policy planners start identifying heat-sensitive economic production sites and activities, and integrating climate adaptation strategies, such as improved, solar-powered cooling systems, “cool roof” isolation materials or switching the operating hours from day to night [27].

Figure 14: Exposure of GDP in Mali to heatwaves for different GHG emissions scenarios.

References

[24] C. Briceño-Garmendia, C. Dominguez, and N. Pushak, “Mali’s Infrastructure: A Continental Perspective,” Washington, D.C., 2011.
[25] OCHA, “Humanitarian Bulletin Mali (July-August 2018),” Bamako, Mali, 2018.
[26] UNIDO and ICSHP, “World Small Hydropower Development Report 2016,” Vienna, Austria and Hangzhou, China, 2016.
[27] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings,” Energy Build., vol. 89, pp. 142–152, 2015.

Niger: Infrastructure

Climate change is expected to significantly affect infrastructure in Niger through extreme weather events. High precipitation amounts can lead to the flooding of roads, while high temperatures can cause roads, bridges and protective structures to develop cracks and degrade more quickly. This will require earlier replacement and lead to higher maintenance and replacement costs. Roads serve communities to trade goods and access healthcare, education, credit and other services. The absence of railways, low navigability of the Niger River and a limited number of airport facilities increase Niger’s reliance on road transportation [26]. Overall, Niger has one of the lowest road densities in Africa with 13 km/1 000 km² [27]. Investments will have to be made to build climate-resilient road networks.

Extreme weather events will also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities like Niamey, Zinder or Maradi. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including steep slopes or river banks, where flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have a low adaptive capacity to respond to such events due to high levels of poverty and lack of risk-reducing infrastructures. For example, heavy rains during the 2019 rainy season caused flooding in several localities across Niger, affecting 256 000 people (67 % in the regions of Maradi, Zinder and Agadez) and leaving 22 000 houses destroyed [28]. In the 1998-2014 period, a total of 1.6 million people were affected by flooding in Niger [29]. Flooding and droughts will also affect hydropower generation: Niger is currently investing in hydropower projects including the construction of the Kandadji Dam on the Niger River. However, variability in precipitation and climatic conditions could severely disrupt hydropower generation.

Projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 4). While the absolute value of 0.14 % is small to begin with, median projections still indicate more than a doubling of national road exposure to floods by mid-century (Figure 12). Although median projections decline again towards the end of the century, they are subject to high modelling uncertainty with the very likely range indicating that road exposure to floods can settle anywhere between a threefold increase and a twofold decrease by 2080 (from 0.07–0.4 % in 2000 to 0.03–1.3 % in 2080). Similarly, median projections of urban land area exposed to floods at least once a year show almost no change (Figure 13), with a very likely range of 0.0–0.3 % by 2080 under RCP6.0. However, it should be noted that projections show the exposure of roads to river floods and exclude, for instance, exposure to floods from excessive precipitation, which is a common phenomenon in Niger, mostly due to its dry, impermeable soils and lack of vegetation [29].

Figure 12: Projections of major roads exposed to river floods at least once a year for Niger for different GHG emissions scenarios.
Figure 13: Projections of urban land area exposed to river floods at least once a year for Niger for different GHG emissions scenarios.

With the exposure of the GDP to heatwaves projected to increase from around 1.7 % in 2000 to 6 % (RCP2.6) or 11 % (RCP6.0) by 2080 (Figure 14), policy planners are strongly advised to start identifying heat-sensitive economic production sites and activities, and integrating climate adaptation strategies such as improved solar-powered cooling systems, “cool roof” isolation materials or switching the operating hours from day to night [30].”

Figure 14: Exposure of GDP in Niger to heatwaves for different GHG emissions scenarios.

References

[26] R. E. Namara, B. Barry, E. S. Owusu, and A. Ogilvie, “An Overview of the Development Challenges and Constraints of the Niger Basin and Possible Intervention Strategies,” Colombo, Sri Lanka, 2011.
[27] C. Domínguez-Torres and V. Foster, “Niger’s Infrastructure: A Continental Perspective,” Washington, D.C., 2011.
[28] OCHA, “Niger: Situation des inondations,” Niamey, Niger, 2019.
[29] E. Fiorillo and V. Tarchiani, “A Simplified Hydrological Method for Flood Risk Assessment at Sub-Basin Level in Niger,” in Renewing Local Planning to Face Climate Change in the Tropics, M. Tiepolo, A. Pezzoli, and V. Tarchiani, Eds. Cham: Springer Nature, 2017, pp. 247–263.
[30] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing cooling demands in a hot dry climate: A simulation study for non-insulated passive cool roof thermal performance in residential buildings,” Energy Build., vol. 89, pp. 142–152, 2015.

Burkina Faso: Infrastructure

Climate change is expected to significantly affect Burkina Faso’s infrastructure sector through extreme weather events, such as flooding and droughts. High precipitation amounts can lead to flooding of transport infrastructure including roads and railroads, while high temperatures can cause roads, bridges and protective structures to develop cracks and degrade more quickly. Transport infrastructure is very vulnerable to extreme weather events, yet essential for social, economic and agricultural livelihoods. Roads serve communities to trade their goods and access healthcare, education, credit as well as other services, especially in rural and remote areas.

Extreme weather events will also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities like Ouagadougou or Bobo-Dioulasso. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including river banks, where flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have low adaptive capacity to respond to such events due to high levels of poverty and a lack of risk-reducing infrastructures. These challenges are particularly salient in Ouagadougou, where urban flooding is a major problem during the rainy season. For example, in 2009, the city experienced torrential precipitation leading to water runoffs and flooding, affecting more than 180 000 people. 41 people died and 33 172 houses were completely destroyed [25].

Despite the risk of infrastructure damage being likely to increase due to climate change, precise predictions of the location and the extent of exposure are difficult to make. For example, projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 4 in the Climate section). In the case of Burkina Faso, projections for both RCP2.6 and RCP6.0 show almost no change in the exposure of major roads to river floods. In the year 2000, 0.13 % of major roads were exposed to river floods at least once a year, while by 2080, this value is projected to change to 0.14 % under RCP2.6 and to 0.12 % under RCP6.0. In a similar way, exposure of urban land area to floods is projected not to change under either RCP (Figure 13).

Figure 12: Projections of major roads exposed to river floods at least once a year for Burkina Faso for different GHG emissions scenarios.
Figure 13: Projections of urban land area exposed to river floods at least once a year for Burkina Faso for different GHG emissions scenarios.

While all models project an increase in the exposure of the GDP to heatwaves, the magnitude of the increase is subject to high modelling uncertainty with two models projecting strong and two models projecting weak increases. Median model projections for RCP2.6 show an increase from 2.0 % in 2000 to 7.0 % by 2080. Under RCP6.0, exposure is projected to increase to 10.5 % over the same time period. It is recommended that policy planners start identifying heat-sensitive economic production sites and activities, and integrating climate adaptation strategies, such as improved, solar-powered cooling systems, “cool roof” isolation materials or switching the operating hours from day to night [26].

Figure 14: Exposure of GDP in Burkina Faso to heatwaves for different GHG emissions scenarios.

References

[25] S. Dos Santos, J. P. Peumi, and A. Soura, “Risk Factors of Becoming a Disaster Victim: The Flood of September 1st, 2009, in Ouagadougou (Burkina Faso),” Habitat Int., vol. 86, no. March, pp. 81–90, 2019.
[26] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings,” Energy Build., vol. 89, pp. 142–152, 2015.