Launch of the climate risk analysis for Northern Ghana

The launch took place as part of a virtual side event at the Africa Climate Week 2021. After a welcome by Prof. Dr. Christoph Gornott (PIK) and a keynote speech by Samuel Lanidune (ProNet North Ghana), Paula Aschenbrenner (PIK) presented the results of the climate risk analysis, along with four short documentary films*, which were produced to highlight key results. The presentation was followed by a round table, including Dr. Antwi-Boasiako Amoah (Environmental Protection Agency, Ghana), Samuel Lanidune, Joyce Okrah (a commercial farmer), Dr. Francis Xavier Jarawura (University for Development Studies, Wa/Ghana), Dr. Abel Chemura (PIK) and Prosper Wie (GIZ). In a lively discussion, the panelists shared innovative ideas and solutions in support of climate adaptation and planning, making clear that collaborative efforts from all sides are needed to act upon the increasing risks of climate change and to overcome constraints to effective adaptation.

The recording of the event can be viewed via YouTube. For the full analysis and complimentary documents, please visit our Downloads section.

* Translations into Dagbani, Dagaari and Sissali will be released soon and are developed by UDS, BvR Producties and EU-REACH.


PIK will host a side event at the Africa Climate Week 2021

Under the title “From science to action – climate risk analyses to support adaptation policies and planning at a local level in sub-Saharan Africa”, the event seeks to identify best practices and design principles for better integrating climate information into adaptation actions on a local and regional scale.

The event will provide two impulses from a practitioner and a scientist highlighting their views on the need of climate information for adaptation planning. Afterwards, a round table will bring together representatives from science, international organizations, governments and practitioners working around the topic of agriculture in rural areas in northern Ghana and beyond. At the end, we reserved a lot of time for your questions. For the full agenda, please click here.

Date: Sunday, 26 September 2021 from 4.00 pm to 6.00pm (GMT+3/EAT)

You are welcome to register for the event via this link.

For any wishes or questions feel free to contact Paula Aschenbrenner.

Four short documentaries were created as part of the AGRICA project

Based on the results of PIK’s climate risk analysis at district level for Ghana’s Upper West Region (UWR), four short documentaries were created to show the effects of climate change on agriculture and crop production. The films present different adaptation strategies that can enable local smallholder farmers to better cope with the challenges of climate change and to stabilize their yields, using the example of Northern Ghana.

The films were produced by Barbara van Rijn from BvR Producties in cooperation with Francis Jarawura from the University of Development Studies (UDS) in Wa, Ghana, the Ghanaian Ministry of Food and Agricultura (MoFA) and the GIZ-project Resilience Against Climate Change (REACH).

A smallholder farmer discusses adaptation strategies with a local expert in Ghana’s Upper West Region.

PIK team joined expert panel at PEGNet conference

The PIK team participated in an expert panel on “Policies for strengthening resilience and managing risk”. In addition to Sophie von Loeben from PIK, panelists included Daniel Thá from Kralingen Consulting and Anett Großmann from GWS. The panelists presented different approaches to analysing climate risks for economic development. Zooming in on the agricultural sector, Sophie gave a presentation on the AGRICA project and its approach of looking at the entire impact chain from climate risks to analysing different adaptation strategies. During the panel discussion, which was moderated by Sebastian Homm from GIZ, participants were able to ask questions and the panelists discussed ways in which the different approaches to climate risk analyses can help to understand climate impacts and support effective adaptation planning.

The PEGNet conference is organised by the German Institute for Global and Area Studies (GIGA), the Mercator Research Institute on Global Commons and Climate Change (MCC), the Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH, and the Poverty Reduction, Equity and Growth Network (PEGNet).

For more information on the PEGNet conference, please click here.

Launch of the Berlin Insights Series on Climate Change and Development

The virtual event was moderated by Dr Fatima Denton, Director of UNU-INRA, with a keynote speech by State Secretary Martin Jäger from BMZ. Professor Christoph Gornott from PIK and University of Kassel introduced the AGRICA project, which seeks to analyse climate risks and suitable adaptation strategies in sub-Saharan Africa. He thereby set the stage for a subsequent panel discussion, including as panelists Professor Johan Rockström, Director at PIK, Harsen Nyambe, Head of Environment, Climate Change, Water and Land Management at the African Union Commission, Carla Montesi, Director of International Partnerships – Green Deal and Digital Agenda (INTPA.F) at the European Union Commission and Dr Moumini Savadogo, Executive Director of the West African Science Service Centre on Climate Change and Adapted Land Use (WASCAL).

The annual Berlin Insights Series on Climate Change and Development is part of a deepened cooperation between PIK and BMZ. With this new format, PIK and BMZ seek to advance science-based cooperation for global climate neutrality and climate resilience, especially in the Global South.

For the full event, please click here or watch below.

Madagascar: Human health

Climate change threatens the health and sanitation sector through more frequent incidences of heatwaves, floods, droughts and storms, including cyclones. Among the key health challenges in Madagascar are morbidity and mortality through vector-borne diseases such as malaria, waterborne diseases related to extreme weather events (e.g. flooding) such as diarrhoea, respiratory diseases, tuberculosis and HIV [32]. Climate change also impacts food and water supply, thereby increasing the risk of malnutrition, hunger and death by famine. Many of these challenges are expected to become more severe under climate change. According to the World Health Organization, Madagascar recorded an estimated 2.2 million cases of malaria including 5 350 deaths in 2018 [33]. Climate change is likely to have an impact on the geographic range of vector-borne diseases: In Madagascar, malaria usually does not occur above 1 500 m [34]. However, temperature increases could expand occurrence to higher-lying areas. This is already the case in Antananarivo which used to be largely free of malaria but is now observing rising numbers of cases [35]. Malaria is also likely to increase in many parts of Madagascar due to flooding and stagnant waters, which provide a breeding ground for mosquitos [35]. Climate change also poses a threat to food security and malnutrition, particularly for subsistence farmers. Chronic malnutrition is generally high with 42 % and could further increase due to the consequences of the COVID-19 pandemic [36]. Furthermore, access to healthcare is often complicated in Madagascar: 40 % of the population live in areas far away from health centers and have to travel for hours to seek medical treatment [35]. Access is even more difficult in the rainy season when many rural areas are cut off by impassable roads.

Exposure to heatwaves

Figure 18: Projections of population exposure to heatwaves at least once a year for Madagascar for different GHG emissions scenarios.

Rising temperatures will result in more frequent heatwaves in Madagascar, leading to increased heat-related mortality. Under RCP6.0, the population affected by at least one heatwave per year is projected to increase from 0.2 % in 2000 to 4.8 % in 2080 (Figure 18).

Heat-related mortality

Figure 19: Projections of heat-related mortality for Madagascar for different GHG emissions scenarios assuming no adaptation to increased heat.

Furthermore, under RCP6.0, heat-related mortality will likely increase from 1.3 to 5.4 deaths per 100 000 people per year by 2080. This translates to an increase by a factor of more than four towards the end of the century compared to year 2000 levels, provided that no adaptation to hotter conditions will take place (Figure 19). Under RCP2.6, heat-related mortality is projected to increase to 2.9 deaths per 100 000 people per year in 2080.


[32] Ministère de la Santé Publique Madagascar, “Politique nationale de santé,” Antananarivo, Madagascar, 2016.
[33] WHO, “World Malaria Report 2019,” Rome, Italy, 2019.
[34] U.S. President’s Malaria Initiative, “Madagascar: Malaria Operational Plan FY 2017,” Washington, D.C., 2017.
[35] S. Barmania, “Madagascar’s Health Challenges,” Lancet, vol. 386, pp. 729–730, 2015.
[36] WFP, “Madagascar Country Brief August 2020,” Rome, Italy, 2020.

Madagascar: Ecosystems

Climate change is expected to have a significant influence on the ecology and distribution of tropical ecosystems, though the magnitude, rate and direction of these changes are uncertain [28]. With rising temperatures and increased frequency and intensity of droughts, wetlands and riverine systems are increasingly at risk of being disrupted and altered, with structural changes in plant and animal populations. Increased temperatures and droughts can also impact succession in forest systems while concurrently increasing the risk of invasive species, all of which affect ecosystems. In addition to these climate drivers, low agricultural productivity and population growth might motivate unsustainable agricultural practices resulting in increased deforestation, fires and soil erosion. In turn, soil erosion, along with heavy precipitation and storms, facilitate the occurrence of landslides, threatening human lives, infrastructure and natural resources [29].

Species richness

Figure 16: Projections of the aggregate number of amphibian, bird and mammal species for Madagascar for different GHG emissions scenarios.

Model projections of species richness (including amphibians, birds and mammals) and tree cover for Madagascar are shown in Figure 16 and 17, respectively. The models applied for this analysis show particularly strong agreement on the development of species richness: Under RCP6.0, species richness is expected to decrease almost all over Madagascar, in some parts by up to 50 % (Figure 16). Under RCP2.6, models are far less certain, projecting slight increases in small patches across Madagascar.

Tree cover

Figure 17: Tree cover projections for Madagascar for different GHG emissions scenarios.

With regard to tree cover, model results are very uncertain and only small changes are projected under both RCPs (Figure 17). Hence, no clear tree cover trends can be identified.

It is important to keep in mind that the model projections exclude any impacts on biodiversity loss from human activities such as land use, which have been responsible for significant losses of global biodiversity in the past, and are expected to remain its main driver in the future [30]. In recent years, Madagascar’s vegetation has experienced profound disturbances due to population pressure and increasing demand for firewood as well as agricultural land, leading to high rates of slash-and-burn activities, which are one of the main drivers behind deforestation [17]. The country has lost 3.89 million ha of tree cover between 2001 and 2019, which is equivalent to a 23 % decrease of national forest area [31].


[17] J. Busch et al., “Climate Change and the Cost of Conserving Species in Madagascar,” Conserv. Biol., vol. 26, no. 3, pp. 408–419, 2012, doi: 10.1111/j.1523-1739.2012.01838.x.
[29] V. J. Ramasiarinoro, L. Andrianaivo, and E. Rasolomanana, “Landslides and Associated Mass Movements Events in the Eastern Part of Madagascar: Risk Assessment, Land-Use Planning, Mitigation Measures and Further Strategies,” Madamines, vol. 4, pp. 28–41, 2012.
[30] IPBES, “Report of the Plenary of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services on the Work of Its Seventh Session,” n.p., 2019.
[31] Global Forest Watch, “Madagascar,” 2019. Online available: [Accessed: Sep. 28, 2020].

Madagascar: Infrastructure

Climate change is expected to significantly affect Madagascar’s infrastructure through extreme weather events. High precipitation amounts can lead to the flooding of roads, while high temperatures can cause roads, bridges and coastal infrastructures to develop cracks and degrade more quickly. This will require earlier replacement and lead to higher maintenance and replacement costs. The poorly developed railway network and limited inland waterway transportation increase Madagascar’s reliance on road transportation [24]. Roads, however, are in very poor condition with the majority being unpaved and difficult to access, especially during the rainy season. With an estimated road network of 31 640 km, Madagascar has one of the lowest road densities in the world [24]. Investments will have to be made to build climate-resilient road networks.

Extreme weather events also have devastating effects on human settlements and economic production sites, especially in urban areas with high population densities like Antananarivo, Toamasina or Antsirabe. Informal settlements are particularly vulnerable to extreme weather events: Makeshift homes are often built in unstable geographical locations including steep slopes or riverbanks, where strong winds and flooding can lead to loss of housing, contamination of water, injury or death. Dwellers usually have a low adaptive capacity to respond to such events due to high levels of poverty and lack of risk-reducing infrastructures. For example, the tropical Cyclone Belna made landfall on the north-western coast of Madagascar in December 2019, affecting 128 000 people [8]. The district of Soalala was hit particularly hard, recording damages to roads, electricity posts and wells [25]. Flooding and droughts will also have an impact on hydropower generation: Madagascar draws 29 % of its energy from hydropower, with a total installed capacity of 162 MW in 2014 [26]. However, variability in precipitation and climatic conditions could severely disrupt hydropower generation.

Despite the risk of infrastructure damage being likely to increase due to climate change, precise predictions of the location and the extent of exposure are difficult to make. For example, projections of river flood events are subject to substantial modelling uncertainty, largely due to the uncertainty of future projections of precipitation amounts and their spatial distribution, affecting flood occurrence (see also Figure 4). In the case of Madagascar, median projections show little change in national road exposure to river floods (Figure 13). In the year 2000, 1.6 % of major roads were exposed to river floods at least once a year. By 2080, this value is projected to not change under RCP6.0 and to increase to 2.0 % under RCP2.6. This difference is in line with precipitation trends for Madagascar. The exposure of urban land area to river floods is projected to change only slightly under both RCP (Figure 14).

Figure 13: Projections of major roads exposed to river floods at least once a year for Madagascar for different GHG emissions scenarios.
Figure 14: Projections of urban land area exposed to river floods at least once a year for Madagascar for different GHG emissions scenarios.

With the exposure of the GDP to heatwaves projected to increase from around 0.3 % in 2000 to 2.4 % (RCP2.6) and 4.8 % (RCP6.0) by 2080 (Figure 15), it is recommended that policy planners start identifying heat-sensitive economic production sites and activities, and integrating climate adaptation strategies such as improved solar-powered cooling systems, “cool roof” isolation materials or switching the operating hours from day to night [27].

Figure 15: Exposure of GDP in Madagascar to heatwaves for different GHG emissions scenarios.


[24] Logistics Cluster and WFP, “Madagascar Logistics Infrastructure.” Online available: [Accessed: Sep. 30, 2020].
[25] OCHA, “Southern Africa: Cyclone Belna (Flash Update No. 5),” New York, 2019.
[26] World Bank, “Small Hydropower Resource Mapping in Madagascar: Hydropower Atlas,” Washington, D.C., 2017.
[27] M. Dabaieh, O. Wanas, M. A. Hegazy, and E. Johansson, “Reducing Cooling Demands in a Hot Dry Climate: A Simulation Study for Non-Insulated Passive Cool Roof Thermal Performance in Residential Buildings,” Energy Build., vol. 89, pp. 142–152, 2015, doi: 10.1016/j.enbuild.2014.12.034.

Madagascar: Agriculture

Smallholder farmers in Madagascar are increasingly challenged by the uncertainty and variability of weather caused by climate change [21]. Since crops are predominantly rainfed, yields highly depend on water availability from precipitation and are prone to drought. Both the length and the intensity of the rainy season are becoming more and more unpredictable and the availability and use of irrigation facilities remains limited: In 2013, only 60 % of the estimated irrigation potential of 1.5 million ha (42 % of total national crop land) was equipped for irrigation [9]. Constraints to the implementation of adaptation strategies usually include limited access to technical equipment, formal credit and extension services [21]. The main irrigated crop is rice, and while temperature increases could be beneficial where low temperatures are currently a limiting factor to the growth of rice, prolonged periods of high temperatures in combination with strong winds could as well have devastating impacts on rice yields [22], [23]. Drier conditions also facilitate the spread of invasive species including the fall armyworm, which caused a yield loss of 47 % for maize in Madagascar in 2018 [8].

Crop land exposure to drought

Figure 11: Projections of crop land area exposed to drought at least once a year for Madagascar for different GHG emissions scenarios.

Currently, the high uncertainty of projections regarding water availability (Figure 10) translates into high uncertainty of drought projections (Figure 11). According to the median over all models employed for this analysis, the national crop land area exposed to at least one drought per year will increase from 0.4 % in 2000 to 1.4 % and 2.6 % in 2080 under RCP2.6 and RCP6.0, respectively. Under RCP6.0, the likely range of drought exposure of the national crop land area per year widens from 0.04–0.8 % in 2000 to 0.9–6.5 % in 2080. The very likely range widens from 0–1.4 % in 2000 to 0.4–9 % in 2080. This means that some models project a tenfold increase of drought exposure over this time period.

Crop yield projections

Figure 12: Projections of crop yield changes for major staple crops in Madagascar for different GHG emissions scenarios assuming constant land use and agricultural management, relative to the year 2000.

In terms of yield projections, model results indicate a negative trend for cassava and maize under both RCPs (Figure 12)6. By 2080, compared to the year 2000, yields of cassava and maize are projected to decrease by 3.8 % and 2.7 % under RCP2.6, and by 2.6 % and 2.8 % under RCP6.0. Yields of rice and sugar cane, on the other hand, are projected to increase by 2.7 % and 9.7 % under RCP6.0 and to not change under RCP2.6. A possible explanation for the more positive results under RCP6.0 is that rice, sugar cane and cassava are so-called C3 plants, which follow a different metabolic pathway than, for example, maize (a C4 plant), and benefit more from the CO2 fertilisation effect under higher concentration pathways. The later drop for cassava can be explained by decreasing levels of precipitation after 2050 under RCP6.0 (see Figure 5). Although some yield changes may appear small at the national level, they will likely increase more strongly in some areas and, conversely, decrease more strongly in other areas as a result of climate change impacts.

Overall, adaptation strategies such as switching to improved varieties in climate change sensitive crops need to be considered, yet should be carefully weighed against adverse outcomes, such as a resulting decline of agro-biodiversity and loss of local crop types.

6 Modelling data is available for a selected number of crops only. Hence, the crops listed on page 2 may differ.


[8] FEWS NET, “Madagascar Food Security Outlook: February to September 2020,” n.p., 2020.
[9] FAO, “AQUASTAT Main Database: Irrigation and Drainage Development.” Online available: [Accessed: Dec. 07, 2020].
[21] C. A. Harvey et al., “Extreme Vulnerability of Smallholder Farmers to Agricultural Risks and Climate Change in Madagascar,” Philos. Trans. R. Soc. B Biol. Sci., vol. 369, no. 1639, 2014, doi: 10.1098/rstb.2013.0089.
[22] E. Gerardeaux, M. Giner, A. Ramanantsoanirina, and J. Dusserre, “Positive Effects of Climate Change on Rice in Madagascar,” Agron. Sustain. Dev., vol. 32, no. 3, pp. 619–627, 2012, doi: 10.1007/s13593-011-0049-6.
[23] AQUASTAT, Irrigation in Africa in Figures. Rome, Italy: FAO, 2005.

Madagascar: Water resources

Madagascar is known for its abundant water resources from precipitation. However, these water resources are unevenly distributed across the country. While parts of the eastern coast of Madagascar receive more than 3,300 mm of precipitation annually, the south-west receives as little as 400 mm and is characterised by a semi-arid to arid climate [18]. For instance, in the 2019 / 2020 rainy season, the very south-west of the country, particularly northern Amboasary and parts of Ambovombe, Tsihombe and Bekily, recorded below-average precipitation levels, threatening agricultural crops which were just sown or at the flowering stage [8]. In contrast, northern Madagascar recorded above-average precipitation levels, which resulted in flooding in several regions, including Alaotra Mangoro, Analamanga, Betsiboka, Boeny, Melaky, and Sofia [19]. Increasingly heavy precipitation events and cyclones already have devastating impacts on smallholder farmers. In a study conducted among smallholder farmers in the aftermath of the 2012 cyclone Giovanna, 81 % of farmers reported losing crops and 70 % reported damages to stored grains, resulting in prolonged periods with insufficient food for household consumption [20].

Per capita water availability

Figure 9: Projections of water availability from precipitation per capita and year with (A) national population held constant at year 2000 level and (B) changing population in line with SSP2 projections for different GHG emissions scenarios, relative to the year 2000.

Current projections of water availability in Madagascar display high uncertainty under both GHG emissions scenarios. Assuming a constant population level, multi-model median projections suggest a decrease of 13 % (RCP2.6) and 15 % (RCP6.0) in per capita water availability by the end of the century (Figure 9A). Yet, when accounting for population growth according to SSP2 projections5, per capita water availability for Madagascar is projected to decline more dramatically, i.e. by 78 % under both RCPs by 2080 relative to the year 2000 (Figure 9B). While this decline is primarily driven by population growth rather than climate change, it highlights the urgency to invest in water saving measures and technologies for future water consumption after 2030.

Spatial distribution of water availability

Figure 10: Water availability from precipitation (runoff) projections for Madagascar for different GHG emissions scenarios.

Projections of future water availability from precipitation vary depending on the region and scenario (Figure 10). In line with precipitation projections, water availability is projected to decrease by up to 25 % in the north and east of Madagascar under RCP6.0. Under RCP2.6, models project decreases of up to 20 % for the north-east with simultaneous increases of up to 40 % in the otherwise very dry south-west of the country. The partial increase in water availability projected under RCP2.6 is based on a constant population level. Hence, water saving measures are likely to become important for Madagascar’s rapidly growing population.

5 Shared Socio-economic Pathways (SSPs) outline a narrative of potential global futures, including estimates of broad characteristics such as country level population, GDP or rate of urbanisation. Five different SSPs outline future realities according to a combination of high and low future socio-economic challenges for mitigation and adaptation. SSP2 represents the “middle of the road”-pathway.


[18] S. Lange, “EartH2Observe, WFDEI and ERA-Interim Data Merged and Bias-Corrected for ISIMIP (EWEMBI).” GFZ Data Service, Potsdam, Germany, 2016, doi: 10.5880/pik.2016.004.
[19] NASA Earth Observatory, “Flood Waters Overwhelm Northern Madagascar,” 2020. Online available: [Accessed: Sep. 28, 2020].
[20] Z. L. Rakotobe et al., “Strategies of Smallholder Farmers for Coping with the Impacts of Cyclones: A Case Study from Madagascar,” Int. J. Disaster Risk Reduct., vol. 17, pp. 114–122, 2016, doi: 10.1016/j.ijdrr.2016.04.013.